• Title/Summary/Keyword: Radiation technique

Search Result 1,283, Processing Time 0.033 seconds

Liver dose reduction by deep inspiration breath hold technique in right-sided breast irradiation

  • Haji, Gunel;Nabizade, Ulviye;Kazimov, Kamal;Guliyeva, Naile;Isayev, Isa
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.254-258
    • /
    • 2019
  • Purpose: Deep inspiration breath hold (DIBH) is a well-established technique that enables efficient cardiac sparing in patients with left-sided breast cancer. The aim of the current study was to determine if DIBH is effective for reducing radiation exposure of of liver and other organs at risk in right breast radiotherapy (RT). Materials and Methods: Twenty patients with right-sided breast cancer were enrolled in this study. Three-dimensional conformal RT plans were generated for each patient, with two different computed tomography scans of free breathing (FB) and DIBH. Nodes were contoured according to the Radiation Therapy Oncology Group contouring guidelines. Dose-volume histograms for the target volume coverage and organs at risk were evaluated and analyzed. Results: DIBH plans showed significant reduction in mean liver dose (5.59 ± 2.07 Gy vs. 2.54 ± 1.40 Gy; p = 0.0003), V20Gy (148.38 ± 73.05 vs. 64.19 ± 51.07 mL; p = 0.0003) and V10Gy (195.34 ± 93.57 vs. 89.81 ± 57.28 mL; p = 0.0003) volumes compared with FB plans. Right lung doses were also significantly reduced in DIBH plans. Heart and left lung doses showed small but statistically significant improvement with application of the DIBH technique. Conclusion: We report that the use of DIBH for right-sided breast cancer significantly reduces the radiation doses to the liver, lungs, and heart.

Implementation of a Radiation-hardened I-gate n-MOSFET and Analysis of its TID(Total Ionizing Dose) Effects

  • Lee, Min-Woong;Lee, Nam-Ho;Jeong, Sang-Hun;Kim, Sung-Mi;Cho, Seong-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1619-1626
    • /
    • 2017
  • Electronic components that are used in high-level radiation environment require a semiconductor device having a radiation-hardened characteristic. In this paper, we proposed a radiation-hardened I-gate n-MOSFET (n-type Metal Oxide Semiconductors Field Effect Transistors) using a layout modification technique only. The proposed I-gate n-MOSFET structure is modified as an I-shaped gate poly in order to mitigate a radiation-induced leakage current in the standard n-MOSFET structure. For verification of its radiation-hardened characteristic, the M&S (Modeling and Simulation) of the 3D (3-Dimension) structure is performed by TCAD (Technology Computer Aided Design) tool. In addition, we carried out an evaluation test using a $Co^{60}$ gamma-ray source of 10kGy(Si)/h. As a result, we have confirmed the radiation-hardened level up to a total ionizing dose of 20kGy(Si).

Angiosarcoma of the Scalp : A Case Report and the Radiotherapy Technique (두피에 발생한 혈관육종 : 증례보고와 방사선치료방법에 대한 고찰)

  • Kim, Joo-Young;Choi, Jin-Ho
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.351-355
    • /
    • 1998
  • Cutaneous angiosarcomas are uncommon malignancies which account about 1$\%$ of sarcomas. They are found most commonly in the head and neck regions, frequently on the scalp. Although preferred treatment has been combined surgery and postoperative radiation therapy, the extensiveness and multiplicity of the lesions set limits to such an approach and the patient is often referred for radiotherapy without surgery. As the entire scalp usually needs to be treated, radiation therapy is a challenging problem to radiation oncology staffs. We report a case of angiosarcoma of the scalp, which was treated successfully by radiation therapy with a simple and repeatable method using mixed Photon and electron beam technique. Using a bolus to increase the surface dose of the scalp and to minimize dose to the normal tissues of the brain desirable but difficult technically to be well conformed to the three dimensional curved surface such as vertex of the head. A helmet made of thermoplastics filled with paraffin was elaborated and used for the treatment, resulting of the relatively uniform surface doses along the several points measured on the scalp, the difference among the points not exceeding 7$\%$ of the prescribed dose by TLD readings.

  • PDF

Development and Evaluation of a Thimble-Like Head Bolus Shield for Hemi-Body Electron Beam Irradiation Technique

  • Shin, Wook-Geun;Lee, Sung Young;Jin, Hyeongmin;Kim, Jeongho;Kang, Seonghee;Kim, Jung-in;Jung, Seongmoon
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.3
    • /
    • pp.152-157
    • /
    • 2022
  • Background: The hemi-body electron beam irradiation (HBIe-) technique has been proposed for the treatment of mycosis fungoides. It spares healthy skin using an electron shield. However, shielding electrons is complicated owing to electron scattering effects. In this study, we developed a thimble-like head bolus shield that surrounds the patient's entire head to prevent irradiation of the head during HBIe-. Materials and Methods: The feasibility of a thimble-like head bolus shield was evaluated using a simplified Geant4 Monte Carlo (MC) simulation. Subsequently, the head bolus was manufactured using a three-dimensional (3D) printed mold and Ecoflex 00-30 silicone. The fabricated head bolus was experimentally validated by measuring the dose to the Rando phantom using a metal-oxide-semiconductor field-effect transistor (MOSFET) detector with clinical configuration of HBIe-. Results and Discussion: The thimble-like head bolus reduced the electron fluence by 2% compared with that without a shield in the MC simulations. In addition, an improvement in fluence degradation outside the head shield was observed. In the experimental validation using the inhouse-developed bolus shield, this head bolus reduced the electron dose to approximately 2.5% of the prescribed dose. Conclusion: A thimble-like head bolus shield for the HBIe- technique was developed and validated in this study. This bolus effectively spares healthy skin without underdosage in the region of the target skin in HBIe-.

A comparative study of dose distribution for whole brain with field-in-field technique (전뇌(Whole Brain)치료 시 Field-in-Field Technique 적용에 관한 고찰)

  • Kim Bo Kyoum;Lee Je Hee;Jung Chi Hoon;Pack Heung Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • Purpose : Uniform dose distribution of the target volume is very important in the radiation treatment. We will evaluate the usefulness of Field-in-Field Technique use to get uniform dose distribution of the target volume and try to find Apply possibility out to a whole brain treatment patient of various thickness. Material and method : We compare the dose distribution when we applied Field-in-Field Technique and parallel opposed fields technique. establish the treatment plan to a phantom(acryl 16cm spheral phantom) and do the measurement, assessment use the TLD and Low sensitivity film. Also the assessment did Apply possibility of Field-in-Field Technique to 20 patient object of various thickness. Result : In the case to use the parallel opposed fields at the whole brain treatment $10-12\%$ high dose region appeared but reduce to $3-4\%$ lesses when we used the Field-in-Field technique. We could get similar numerical value the film and TLD measurement result also. The change of the dose distribution appeared to its ${\pm}1{\sim}2\%$ although it applied such Field-in-Field technique to various patient so that we were identical. Conclusion : We can get uniform dose distribution of in the treatment region if we apply the Field-in-Field technique at the whole brain treatment. Also alternate can play the role of the wedge filter and 3D compensator and We are thought by minimizing the obstacle to be happened due to the high dose region when radiation treatment.

  • PDF

Precise prediction of radiation interaction position in plastic rod scintillators using a fast and simple technique: Artificial neural network

  • Peyvandi, R. Gholipour;rad, S.Z. Islami
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1154-1159
    • /
    • 2018
  • Precise prediction of the radiation interaction position in scintillators plays an important role in medical and industrial imaging systems. In this research, the incident position of the gamma rays was predicted precisely in a plastic rod scintillator by using attenuation technique and multilayer perceptron (MLP) neural network, for the first time. Also, this procedure was performed using nonlinear regression (NLR) method. The experimental setup is comprised of a plastic rod scintillator (BC400) coupled with two PMTs at two sides, a $^{60}Co$ gamma source and two counters that record count rates. Using two proposed techniques (ANN and NLR), the radiation interaction position was predicted in a plastic rod scintillator with a mean relative error percentage less than 4.6% and 14.6%, respectively. The mean absolute error was measured less than 2.5 and 5.5. The correlation coefficient was calculated 0.998 and 0.984, respectively. Also, the ANN technique was confirmed by leave-one-out (LOO) method with 1% error. These results presented the superiority of the ANN method in comparison with NLR and the other methods. The technique and set up used are simpler and faster than other the previous position sensitive detectors. Thus, the time, cost and shielding and electronics requirements are minimized and optimized.

The deep inspiration breath hold technique using Abches reduces cardiac dose in patients undergoing left-sided breast irradiation

  • Lee, Ha Yoon;Chang, Jee Suk;Lee, Ik Jae;Park, Kwangwoo;Kim, Yong Bae;Suh, Chang Ok;Kim, Jun Won;Keum, Ki Chang
    • Radiation Oncology Journal
    • /
    • v.31 no.4
    • /
    • pp.239-246
    • /
    • 2013
  • Purpose: We explored whether the deep inspiration breath hold (DIBH) technique using Abches during left-sided breast irradiation was effective for minimizing the amount of radiation to the heart and lung compared to free breathing (FB). Materials and Methods: Between February and July 2012, a total of 25 patients with left-sided breast cancer underwent two computed tomography scans each with the DIBH using Abches and using FB after breast-conserving surgery. The scans were retrospectively replanned using standardized criteria for the purpose of this study. The DIBH plans for each patient were compared with FB plans using dosimetric parameters. Results: All patients were successfully treated with the DIBH technique using Abches. Significant differences were found between the DIBH and FB plans for mean heart dose (2.52 vs. 4.53 Gy), heart V30 (16.48 vs. $45.13cm^3$), V20 (21.35 vs. $54.55cm^3$), mean left anterior descending coronary artery (LAD) dose (16.01 vs. 26.26 Gy, all p < 0.001), and maximal dose to $0.2cm^3$ of the LAD (41.65 vs. 47.27 Gy, p = 0.017). The mean left lung dose (7.53 vs. 8.03 Gy, p = 0.073) and lung V20 (14.63% vs. 15.72%, p = 0.060) of DIBH using Abches were not different significantly compared with FB. Conclusion: We report that the use of a DIBH technique using Abches in breathing adapted radiotherapy for left-sided breast cancer is easily feasible in daily practice and significantly reduces the radiation doses to the heart and LAD, therefore potentially reducing cardiac risk.

Evaluation of Tangential Fields Technique Using TOMO Direct Radiation Therapy after Breast Partial Mastectomy (유방 부분 절제술 후 방사선 치료 시 TOMO Direct를 이용한 접선 조사의 선량적 유용성에 관한 고찰)

  • Kim, Mi-Jung;Kim, Joo-Ho;Kim, Hun-Kyum;Cho, Kang-Chul;Chun, Byeong-Chul;Cho, Jeong-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • Purpose: Investigation of the clinical use of tangential fields technique using TOMO direct in comparison to conventional LINAC based radiation therapy after breast partial mastectomy. Materials and Methods: Treatment plans were created for 3 left-sided breast cancer patients who had radiation therapy after breast partial mastectomy by using wedged tangential fields technique, field in field technique (FIF), TOMO Direct, TOMO Direct intensity modulated radiation therapy (IMRT) under the normalized prescription condition ($D_{90%}$: 50.4 Gy/28 fx within CTV). Dose volume histogram (DVH) and isodose curve were used to evaluate the dose to the clinical target volume (CTV), organ at risk (OAR). We compared and analyzed dosimetric parameters of CTV and OAR. Dosimetric parameters of CTV are $D_{99}$, $D_{95}$, Dose homogeneity index (DHI: $D_{10}/D_{90}$) and $V_{105}$, $V_{110}$. And dosimetric parameters of OAR are $V_{10}$, $V_{20}$, $V_{30}$, $V_{40}$ of the heart and $V_{10}$, $V_{20}$, $V_{30}$ of left lung. Results: Dosimetric results of CTV, the average value of $D_{99}$, $D_{95}$ were $47.7{\pm}1.1Gy$, $49.4{\pm}0.1Gy$ from wedged tangential fields technique (W) and FIF (F) were $47.1{\pm}0.6Gy$, $49.2{\pm}0.4Gy$. And it was $49.2{\pm}0.4$ vs. $48.6{\pm}0.8Gy$, $49.9{\pm}0.4$ vs. $49.5{\pm}0.3Gy$ Gy for the TOMO Direct (D) and TOMO Direct IMRT (I). The average value of dose homogeneity index was W: $1.1{\pm}0.02$, F: $1.07{\pm}0.02$, D: $1.03{\pm}0.001$, I: $1.05{\pm}0.02$. When we compared the average value of $V_{105}$, $V_{110}$ using each technique, it was the highest as $34.6{\pm}9.3%$, $7.5{\pm}7.9%$ for wedged tangential fields technique and the value dropped for FIF as $16.5{\pm}14.8%$, $2.1{\pm}3.5%$, TOMO direct IMRT as $7.5{\pm}8.3%$, $0.1{\pm}0.1%$ and the TOMO direct showed the lowest values for both as 0%. Dosimetric results of OAR was no significant difference among each technique. Conclusion: TOMO direct provides improved target dose homogeneity over wedged tangential field technique. It is no increase the amount of normal tissue volumes receiving low doses, as oppose to IMRT or Helical TOMO IMRT. Also, it simply performs treatment plan procedure than FIF. TOMO Direct is a clinical useful technique for breast cancer patients after partial mastectomy.

  • PDF

A New Hardening Technique Against Radiation Faults in Asynchronous Digital Circuits Using Double Modular Redundancy (이중화 구조를 이용한 비동기 디지털 시스템의 방사선 고장 극복)

  • Kwak, Seong Woo;Yang, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.625-630
    • /
    • 2014
  • Asynchronous digital circuits working in military and space environments are often subject to the adverse effects of radiation faults. In this paper, we propose a new hardening technique against radiation faults. The considered digital system has the structure of DMR (Double Modular Redundancy), in which two sub-systems conduct the same work simultaneously. Based on the output feedback, the proposed scheme diagnoses occurrences of radiation faults and realizes immediate recovery to the normal behavior by overriding parts of memory bits of the faulty sub-system. As a case study, the proposed control scheme is applied to an asynchronous dual ring counter implemented in VHDL code.

Acoustic Radiation Characteristics from Flexible Steel Plate Excited by Acoustic Loading in an Rectangular enclosure (음향 가진된 밀폐계의 유연한 평판의 음향 방사 특성에 관한 연구)

  • 김상헌;안지훈;오재응
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.457-466
    • /
    • 1997
  • The experimental and analytical study was conducted to determine the noise transmission characteristics of acoustically loaded steel plate of rectangular enclosure and to investigate the sound radiation characteristics through out the enclosure. The vibrations of acoustically loaded plate give rise to sound radiations and generate the reverberant space that the sound field exists very close to a vibrating plate. Acoustic transmission loss is measured from the incident intensity into the plate and the transmitted intensity through out the plate. Sound radiation patterns are measured from both acoustic intensity technique and surface intensity technique. Those resultant patterns and vibrational modes are vital in understanding the relations between vibration and noise in the near field out of vibrating plate.

  • PDF