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Background: The hemi-body electron beam irradiation (HBIe–) technique has been proposed 
for the treatment of mycosis fungoides. It spares healthy skin using an electron shield. However, 
shielding electrons is complicated owing to electron scattering effects. In this study, we devel-
oped a thimble-like head bolus shield that surrounds the patient’s entire head to prevent irradia-
tion of the head during HBIe–.

Materials and Methods: The feasibility of a thimble-like head bolus shield was evaluated using 
a simplified Geant4 Monte Carlo (MC) simulation. Subsequently, the head bolus was manufac-
tured using a three-dimensional (3D) printed mold and Ecoflex 00-30 silicone. The fabricated 
head bolus was experimentally validated by measuring the dose to the Rando phantom using a 
metal-oxide-semiconductor field-effect transistor (MOSFET) detector with clinical configura-
tion of HBIe–.

Results and Discussion: The thimble-like head bolus reduced the electron fluence by 2% com-
pared with that without a shield in the MC simulations. In addition, an improvement in fluence 
degradation outside the head shield was observed. In the experimental validation using the in-
house-developed bolus shield, this head bolus reduced the electron dose to approximately 2.5% 
of the prescribed dose.

Conclusion: A thimble-like head bolus shield for the HBIe– technique was developed and vali-
dated in this study. This bolus effectively spares healthy skin without underdosage in the region 
of the target skin in HBIe–.

Keywords: Hemi-Body Electron Beam Irradiation, Bolus, Electron Shielding, MOSFET  
Detector, Monte Carlo Simulation
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Introduction

Cutaneous T-cell lymphoma occurs when white blood cells in the skin become can-

cerous. Mycosis fungoides, a type of cutaneous T-cell lymphoma, causes widespread 

patches and plaques involving visceral organs [1]. Several studies have investigated 

treatments for mycosis fungoides, such as chemotherapy and immunotherapy [2, 3]. 

The total skin electron irradiation (TSEI) technique, which delivers uniform doses to 

the patient’s skin [4], has been reported to be effective in several previous studies [5]. It 

is generally accepted that the shielding of very thin organs, such as fingernails and toe-
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nails, prevents double exposures, and shielding lenses mini-

mize toxicity [6].

Clinically, the hemi-body irradiation (HBI) technique, 

which delivers a uniform dose to a part of the skin, has been 

proposed to minimize dose deposition on the remaining 

healthy skin [7]. However, the HBI technique primarily uses 

photon beams with collimators because electron shielding 

 is extremely complicated owing to the electron scattering ef-

fect and X-ray contamination [8]. Several studies have been 

conducted on hemi-body electron beam irradiation (HBIe–) 

using lead, aluminum, or plywood plates [9–11]; however, 

they all reported significantly wide penumbra at the shield 

boundary. Furthermore, a previous study on electron shield-

ing has investigated the effect of surrounding the organs-at-

risk with low-Z materials, such as wax bolus [12]. Essentially, 

minimizing the air gap between the shield and skin could re-

duce the penumbra width at the electron shield boundary.

In this study, we propose the use of a thimble-like head 

bolus shield surrounding the patient’s entire head to deliver 

a uniform dose to the patient’s skin, except in the region 

above the neck. The feasibility of the head bolus shield was 

evaluated using the Monte Carlo (MC) method. Subsequent-

ly, the shielding performance of the head bolus was mea-

sured by comparison with a clinically used lead plate shield.

Materials and Methods

1. Monte Carlo Simulation
The effects of the lead plate shield and surrounding bolus 

shield were evaluated to validate the plausibility of the thim-

ble-like head bolus shield using the Geant4 toolkit [13]. The 

MC simulation was carried out with a simplified configura-

tion. A 6 MeV monoenergetic electron beam of sufficient 

field size (100 cm× 100 cm) for a uniform fluence distribu-

tion was irradiated in the anterior-posterior (AP) direction 

through a 1 cm-thick polymethyl methacrylate (PMMA) 

spoiler. A water phantom of 15 cm × 20 cm × 25 cm repre-

sented the patient’s head, and an additional water volume 

below the head phantom was placed to take the scattering 

from the phantom body into account. In the MC simulation, 

the electron and photon energy fluences at the upstream 

surface of the head phantom were evaluated. Additionally, 

the electron fluence as a function of the distance from the 

center of the phantom was studied.

The three shielding scenarios shown in Fig. 1 were tested. 

Fig. 1A illustrates the electron irradiation without any shield 

except for the 1 cm-PMMA spoiler of infinite area. Fig. 1B 

shows a 1 cm-thick lead, a 1 cm-thick bolus plate shield up-

stream of the spoiler, and an additional 0.5 cm-thick bolus 

surrounding the head. The area of the shielding plate was  

32 cm × 32 cm, which is the same as that of clinically used 

shielding plates. This plate is larger than the head phantom 

to minimize the electron scattering effect on the phantom at 

the edge of the plate. Fig. 1C shows the configuration used to 

evaluate the effects of a 2.5-cm thick bolus surrounding the 

head. The bolus used in this study was composed of Ecoflex 

00-30 (Smooth-On Incorporated, Macungie, PA, USA); the 

properties of the bolus material are listed in Table 1 [14].

Herein, the “G4EmStandardPhysics_option4” modular 

physics constructor was used for radiation therapy simula-

Fig. 1. Monte Carlo configuration of head shielding scenarios: (A) without shield, (B) lead and bolus plate with an additional bolus, and (C) 
thimble-like head bolus. Electron and photon fluences at surface (scoring plane, purple) were assessed.
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tion. A total of 5 × 107 incident electrons were simulated to 

obtain sufficient statistics with statistical uncertainties of less 

than 1%, and the simulation took approximately 280 CPU 

hours for each case.

2. Experimental Configuration
The thimble-like head bolus was manufactured using a 

three-dimensional (3D) printed mold—M300 dual 3D print-

er (Zotrax, Olsztyn, Poland) and high-impact polystyrene 

(HIPS) filament—and Ecoflex 00-30 silicone, as shown in Fig. 

2. This head bolus is not patient-specific but has a simple cy-

lindrical shape because of its shielding purpose, unlike the 

clinical 3D bolus. Note that 3D manufacturing took 249 

hours; however, we could avoid the time-consuming proce-

dure of 3D printing for patient-specific devices, leading to 

approximately 130 hours per case for all patients. A head bo-

lus with inner and outer diameters, height, and thickness of 

25, 30, 30, and 2.5 cm, respectively, weighs 4.7 kg.

Subsequently, experimental validation of the head bolus 

was performed using the clinical configuration of HBIe–. The 

Stanford technique, which is the most typical way to deliver 

a uniform dose to patient skin using the TSEI technique,  

was used [15]. TrueBeam linear accelerator (Varian Medical 

Systems,Palo Alto, CA, USA) was used to deliver a 6-MeV high 

dose rate total skin electron (HDTSe-) beam of  2,500 MU/min, 

determined by the monitor unit (MU). The pre-calibrated 

MU total of 2,178 was irradiated with a 40 cm× 40 cm field 

size and delivered a prescription dose of 200 cGy. An extend-

ed source-to-axis distance (SAD) of 340 cm and gantry an-

gles of 90°± 19° (i.e., 71° and 109°, pre-calibrated) were used 

in the dual-field irradiation technique to obtain sufficient 

longitudinal coverage and dose uniformity.

The Rando head phantom (CIRS, Norfolk, VA, USA) was 

positioned in six directions (anterior, left anterior oblique, 

right anterior oblique, posterior, left-posterior oblique, and 

right-posterior oblique), as described by the Stanford tech-

nique [16]. A 1 cm-thick layer of PMMA spoiler reducing the 

electron range in patient skin was placed 30 cm in front of 

the phantom to target the T-cells distributed in the cutane-

ous layer. Measurements were carried out at five locations on 

the head phantom using a TN-502RD-H metal-oxide-semi-

conductor field-effect-transistor (MOSFET) dosimeter 

(CNMC, Nashville, TN, USA), as shown in Fig. 3A. The MOS-

FET detector was used in high-sensitivity mode, which is 

three times more sensitive than the standard mode. The 

MOSFET detector was pre-calibrated using a 6-MeV electron 

beam in the reference condition to verify the output consis-

tency; However, the dose rate at the patient surface is similar 

to 6 MeV electron beam owing to the extended SAD configu-

ration. The supporting structure below the Rando phantom 

was filled with a bolus to consider the phantom scatter ef-

fect; nevertheless, the influence on the phantom surface may 

have been negligible.

In addition to the MC configuration, measurements were 

performed for the following three shielding scenarios. The 

first case was the Rando head phantom without any shield 

but a 1 cm-thick PMMA spoiler, as shown in Fig. 3B. The sec-

Table 1. Material Properties of EcoflexTM 00-30 [14]

Mass density (g/cm3)
Elemental composition (atomic weight, %)

H C O Na Si

1.07 7.3 28.9 4.7 0.2 58.9

Fig. 2. (A) A 3D illustration of bolus mold. (B) Thimble-like head bo-
lus developed in this work.

Fig. 3. (A) Five dosimetric points on Rando head phantom. Experi-
mental configurations of shielding scenarios: (B) without shielding, 
(C) with the lead-bolus plate and the bolus surrounding the head 
phantom, and (D) with a head bolus shield.
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ond case was a 32 cm× 32 cm lead and bolus plate upstream 

of the PMMA spoiler with an additional 0.5 cm-thick bolus 

surrounding the head phantom, as shown in Fig. 3C. The last 

case was a thimble-like head bolus of 2.5 cm covering the 

patient’s entire head, as shown in Fig. 3D. 

Results and Discussion

In the MC results shown in Fig. 4, the electron fluence ex-

hibits a uniform distribution along the off-axis distance with-

out the shield. The total thickness of the shield (PMMA of 1 

cm thick, lead of 1 cm thick, and bolus of 1.5 cm thick) was 

sufficiently large to stop 6 MeV electrons. Note that electrons 

have a practical range of approximately 2.9 cm in water [17]. 

However, the lead and bolus plate along with the surround-

ing 0.5 cm-thick bolus blocked only 67% of electrons. In ad-

dition, it was observed that the lead shield caused unintend-

ed dose decreases outside the shield by down to 25%. We as-

sumed that the disequilibrium of electron fluence due to 

electron scattering at the air gap between the plate shield 

and the phantom caused shielding washout. By contrast, the 

thimble-like head bolus reduced the electron fluence at the 

head surface to 2%, with a small fluence degradation outside 

the shield.

Fig. 4B shows the electron energy fluence at the scoring 

surface. Although the incident energy of electrons is monoen-

ergetic at 6 MeV, a mean energy of 2.8 MeV is evaluated for 

the PMMA plate scenario. The lead+bolus plate with the sur-

rounding 0.5 cm-thick bolus and thimble-like head bolus re-

duced the electron flunce and mean energy of electrons to 1.8 

and 1.3 MeV, respectively. However, the photon fluence (in-

cluding bremsstrahlung X-rays and annihilation photons), as 

shown in Fig. 4C, exhibited no significant differences with re-

spect to the shielding scenarios. Although the bremsstrah-

lung events occurred in the thimble-like bolus were only 19% 

of the same events occurred in the lead plate, the photon flu-

ence of the thimble-like head bolus case was 10%–12% higher 

than that of other cases. Therefore, we concluded that the 

distance between the bremsstrahlung target and the scoring 

plane is important because of the directionality of the brems-

strahlung X-rays. However, the contribution of photon flu-

ence to the surface dose was almost negligible, as reported in 

a previous study [17].

In the experimental study using the MOSFET detector, the 

average dose of 214.9 ± 9.5 cGy and 71.3 ± 9.9 cGy over five 

dosimetric points were evaluated for configurations with and 

without the shielding, respectively, as shown in Fig. 5. The 

lead and bolus plate with the surrounding 0.5 cm-thick bolus 

prevented only 67% of the prescribed dose, as in the simpli-

fied MC case; therefore, we concluded that the shielding area 
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was not sufficient to shield the entire head owing to electron 

scattering. However, a larger plate shield may result in an 

undesirable decrease in the dose outside the shield.

In contrast to the lead shield, 5.3± 2.1 cGy was measured 

over five points with the thimble-like head bolus developed 

in this study. The shielding performance reducing the dose 

down to 2.5% was superior to that of the former approach 

and was consistent with our MC results (2%). Based on these 

results, we validated the dosimetric characteristics of the 

thimble-like head bolus for the HBIe– technique. However, 

for use in clinical practice, the 4.7 kg weight of the head bolus 

might be a potential obstacle to overcome because it is too 

heavy to be placed on the patient’s head. From a clinical per-

spective, fixing the head bolus should be considered for pa-

tient safety.

Conclusion

In this study, a thimble-like head bolus shield for the HBIe– 

technique was developed and validated. In the MC simula-

tions, this bolus shield reduced the electron fluence to 2% 

compared with that without the shield. This result showed a 

performance superior to that of the clinically used lead plate 

shield, which only prevents 67% of electron fluence. In addi-

tion, the dose decrease outside the head shield was remark-

ably reduced. In the experimental validation using the in-

house developed bolus shield, this bolus reduced the elec-

tron dose to approximately 2.5% of the prescribed dose.
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