• Title/Summary/Keyword: Radiation spectrum

Search Result 511, Processing Time 0.023 seconds

Calculation of the Air-Scattering Dose Rate by the Single Scattering Approximation (단일산란근사법(單一散亂近似法)에 의한 공기중(空氣中) 산란방사선량(散亂放射線量)의 계산(計算))

  • Yook, Chong-Chul;Ha, Chung-Woo;Lee, Jai-Ki;Moon, Philip S.
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 1979
  • A calculation is presented of air-scattered gamma rays using the modified single-scattering approximation. The air-scattered tissue dose rates are calculated for a general purpose taking into account (a) the buildup and exponential attenuation, (b) the energy spectrum at the position of question and (c) the geometrical scattering volume in three dimensions. These calculations have been further modified to render them applicable to a typical field irradiation facility which is surrounded by a shield wall and in which the source is fitted with a beam collimating device. The results of the calculation include the energy spectra, angular distribution and tissue does rates at source-receiver separation distances of from 35m to 300m. The comparison shows that the present method developed may be generally adequate for the gamma-ray air-scattering problems in field irradiation facilities if energy and angular distribution at the shield are unimportant.

  • PDF

Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields

  • Lee, Minju;Lee, Daehee;Ko, Eunbie;Park, Kyeongjin;Kim, Junhyuk;Ko, Kilyoung;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1029-1035
    • /
    • 2020
  • The detector suffers from pulse pileup by overlapping of the signals when it was used in high radiation fields. The pulse pileup deteriorates the energy spectrum and causes count losses due to random co-incidences, which might not resolve within the resolving time of the detection system. In this study, it is aimed to propose a new pulse pileup correction method. The proposed method is to correct the start point of the pileup pulse. The parameters are obtained from the fitted exponential curve using the peak point of the previous pulse and the start point of the pileup pulse. The amplitude at the corrected start point of the pileup pulse can be estimated by the peak time of the pileup pulse. The system is composed of a NaI (Tl) scintillation crystal, a photomultiplier tube, and an oscilloscope. A 61 μCi 137Cs check-source was placed at a distance of 3 cm, 5 cm, and 10 cm, respectively. The gamma energy spectra for the radioisotope of 137Cs were obtained to verify the proposed method. As a result, the correction of the pulse pileup through the proposed method shows a remarkable improvement of FWHM at 662 keV by 29, 39, and 7%, respectively.

Radiation measurement and imaging using 3D position sensitive pixelated CZT detector

  • Kim, Younghak;Lee, Taewoong;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1417-1427
    • /
    • 2019
  • In this study, we evaluated the performance of a commercial pixelated cadmium zinc telluride (CZT) detector for spectroscopy and identified its feasibility as a Compton camera for radiation monitoring in a nuclear power plant. The detection system consisted of a $20mm{\times}20mm{\times}5mm$ CZT crystal with $8{\times}8$ pixelated anodes and a common cathode, in addition to an application specific integrated circuit. The performance of the various radioisotopes $^{57}Co$, $^{133}Ba$, $^{22}Na$, and $^{137}Cs$ was evaluated. In general, the amplitude of the induced signal in a CZT crystal depends on the interaction position and material non-uniformity. To minimize this dependency, a drift time correction was applied. The depth of each interaction was calculated by the drift time and the positional dependency of the signal amplitude was corrected based on the depth information. After the correction, the Compton regions of each spectrum were reduced, and energy resolutions of 122 keV, 356 keV, 511 keV, and 662 keV peaks were improved from 13.59%, 9.56%, 6.08%, and 5%-4.61%, 2.94%, 2.08%, and 2.2%, respectively. For the Compton imaging, simulations and experiments using one $^{137}Cs$ source with various angular positions and two $^{137}Cs$ sources were performed. Individual and multiple sources of $^{133}Ba$, $^{22}Na$, and $^{137}Cs$ were also measured. The images were successfully reconstructed by weighted list-mode maximum likelihood expectation maximization method. The angular resolutions and intrinsic efficiency of the $^{137}Cs$ experiments were approximately $7^{\circ}-9^{\circ}$ and $5{\times}10^{-4}-7{\times}10^{-4}$, respectively. The distortions of the source distribution were proportional to the offset angle.

Installation and Operation of a Double-Sided Laser Heating System for the Synthesis of Novel Materials Under Extreme Conditions (극한 조건하에서 신물질 합성을 위한 양쪽 가열 레이저 가열 시스템 설치 및 운영)

  • Ko, Young-Ho;Oh, Kyoung Hun;Kim, Kwang Joo
    • New Physics: Sae Mulli
    • /
    • v.69 no.10
    • /
    • pp.1107-1114
    • /
    • 2019
  • Producing extremely stable high temperature and pressure condition is crucial in order to synthesize novel materials with various functions and to investigate their static and dynamic properties. Already a high pressure in the Mbar range, which is necessary to make novel materials, can be acquired by using a Diamond Anvil Cell (DAC), In this study, a laser-heating system combined with the DAC was designed and installed using two 1064-nm, 100-W fiber lasers on different sides of the DAC to heat the sample and three spectrometers to measure the temperature, pressure, and Raman spectra. A stainless-steel gasket, which is generally used as a sample chamber in high-pressure experiments, was heated to make a thermal radiation source, and the temperature of the heated gasket was obtained by measuring the spectrum of the radiation. By applying this technique, we were able to make various materials and to investigate their physical properties under extreme conditions.

Characteristics of Heavy Metal Oxide Glasses in BaO-GeO2-La2O3-ZnO-Sb2O3 System for Infrared Lens (적외선 렌즈용 BaO-GeO2-La2O3-ZnO-Sb2O3계 중금속 산화물 유리의 특성)

  • Sang-Jin Park;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.414-421
    • /
    • 2023
  • Infrared radiation (IR) refers to the region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1 mm. Any object with a temperature above absolute zero (0 K) radiates in the infrared region, and a material that transmits radiant energy in the range of 0.74 to 1.4 um is referred to as a near-infrared optical material. Germanate-based glass is attracting attention as a glass material for infrared optical lenses because of its simple manufacturing process. With the recent development of the glass molding press (GMP) process, thermal imaging cameras using oxide-based infrared lenses can be easily mass-produced, expanding their uses. To improve the mechanical and optical properties of commercial materials consisting of ternary systems, germanate-based heavy metal oxide glasses were prepared using a melt-cooling method. The fabricated samples were evaluated for thermal, structural, and optical properties using DSC, XRD, and XRF, respectively. To derive a composition with high glass stability for lens applications, ZnO and Sb2O3 were substituted at 0, 1, 2, 3, and 4 mol%. The glass with 1 mol% added Sb2O3 was confirmed to have the optimal conditions, with an optical transmittance of 80 % or more, a glass transition temperature of 660 ℃, a refractive index of 1.810, and a Vickers hardness of 558. The possibility of its application as an alternative infrared lens material to existing commercial materials capable of GMP processing was confirmed.

Design of Vivaldi Antenna suitable for Impulse-like Waveform Radiation (임펄스 유사 신호 복사에 적합한 비발디 안테나 설계)

  • Doojin Lee;Bong Jin Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 2024
  • In this paper, the method to design the antenna, which is suitable for an impulse-like waveform radiation, is presented. In general, the impulse-like waveform has its spectrum of around sub GHz bandwidth and the antenna should be properly designed for not only operating wide-bandwidth also reflecting the time domain characteristics for near-zone impulse radar applications. In this regard, Vivaldi antenna has been designed and characterized in terms of short-pulse radiating aspects in the time domain and verified by measured results. The designed antenna has shown to be operating within wide-bandwidth and to be stable for the input impedance from 1.8 to more than 10GHz. The far-zone radiating waveform has been investigated on each plane at the interval of 30degree and the designed antenna has shown to be a directive characteristic. It can be seen that those results proposed are widely applicable to the near area sensing applications such as ground-penetrating radar.

A Convenient Radiolabeling of [$^{11}$C](R)-PK11195 Using Loop Method in Automatic Synthesis Module ($^{11}$C 표지 자동합성장치에서 루프법을 이용한 ($^{11}$C)(R)-PK11195의 간편한 합성법)

  • Lee, Hak-Jeong;Jeong, Jae-Min;Lee, Yun-Sang;Kim, Hyung-Woo;Choi, Jae-Yeon;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.337-343
    • /
    • 2009
  • Purpose: ((R)-1-(2-chlorophenyl)-N-1-[$^{11}$C]methyl-N(1-propyl)-3-isoquinoline carboxamide ((R)-PK11195) is a specific ligand for the peripheral type benzodiazepine receptor and a marker of activated microglia, used to measure inflammation in neurologic disorders. We report here that a direct and simple radiosynthesis of [$^{11}$C](R)-PK11195 in mild condition using NaH suspension in DMF and one-step loop method. Materials and Methods: (R)-N-Desmethyl-PK11195 (1 mg) in DMSO (0.1 mL) and NaH suspension in DMF (0.1 mL) were injected into a semi-prep HPLC loop. [$^{11}$C]methyl iodide was passed through HPLC loop at room temperature. Purification was performed using semi-preparative HPLC. Aliquots eluted at 11.3 min were collected and analyzed by analytical HPLC and mass spectrometer. Results: The labeling efficiency of [$^{11}$C](R)-PK11195 was 71.8$\pm$8.5%. The specific activity was 11.8:$\pm$6.4 GBq/$\mu$mol and radiochemical purity was higher than 99.2%. The mass spectrum of the product eluted at 11.3 min showed m/z peaks at 353.1 (M+1), indicating the mass and structure of (R)-PK11195. Conclusion: By the one-step loop method with the [$^{11}$C]CH3l automated synthesis module, [$^{11}C$](R)-PK11195 could be easily prepared in high radiochemical yield using NaH suspension in DMF.

Verification of MCNP/ORIGEN-2 Model and Preliminary Radiation Source Term Evaluation of Wolsung Unit 1 (월성 1호기 MCNP/ORIGEN-2 모델 검증 및 예비 선원항 계산)

  • Noh, Kyoungho;Hah, Chang Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.21-34
    • /
    • 2015
  • Source term analysis should be carried out to prepare the decommissioning of the nuclear power plant. In the planning phase of decommissioning, the classification of decommissioning wastes and the cost evaluation are performed based on the results of source term analysis. In this study, the verification of MCNP/ORIGEN-2 model is carried out for preliminary source term calculation for Wolsung Unit 1. The inventories of actinide nuclides and fission products in fuel bundles with different burn-up were obtained by the depletion calculation of MCNPX code modelling the single channel. Two factors affecting the accuracy of source terms were investigated. First, the neutron spectrum effect on neutron induced activation calculation was reflected in one-group microscopic cross-sections of relevant radio-isotopes using the results of MCNP simulation, and the activation source terms calculated by ORIGEN-2 using the neutron spectrum corrected library were compared with the results of the original ORIGEN-2 library (CANDUNAU.LIB) in ORIGEN-2 code package. Second, operation history effect on activation calculation was also investigated. The source terms on both pressure tubes and calandria tubes replaced in 2010 and calandria tank were evaluated using MCNP/ORIGEN-2 with the neutron spectrum corrected library if the decommissioning wastes can be classified as a low level waste.

Mössbauer Studies of the Magnetic Properties in Ba-ferrite Single Crystal (Ba-Ferrite 단결정의 자기적 특성에 관한 뫼스바우어 분광학적 연구)

  • Sur, J.C.;Gee, S.H.;Hong, Y.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.60-64
    • /
    • 2007
  • Ba-Ferrite single crystals were prepared and characterized by X-ray, SEM and Mossbauer spectroscopy. The single crystal layers was cut in the c-axis and radiated to the surface by ${\gamma}-rays$ for Mossbauer spectroscopy. We found out that the spin states in Fe atoms were parallel to the ${\gamma}-rays$ direction. The temperature dependence of the hyperfine field is almost similar to that of powder samples. The crystal structure is a Magnetoplumbite without any other phases and the lattice parameters are found out with $a_0=5.892{\AA},\;b_0=5.892{\AA},\;c_0=23.198{\AA}$. $M\"{o}ssbauer$ spectrum in single crystal have 5 sets off absorption lines in each Fe site when the ${\gamma}-rays$ have the same radiation direction with the c-axis in the crystal, which mean that the whole crystal bulk formed only one crystal and same spin direction. The hysteresis curve shows the saturation moment and coercive force of 70.71 emu/g and 320 Oe respectively.

IRAS 15099-5856: Remarkable Mid-Infrared Source with Prominent Crystalline Silicate Emission

  • Koo, Bon-Chul;McKee, Christopher F.;Suh, Kyung-Won;Moon, Dae-Sik;Burton, Michael, G.;Hiramatsu, Masaaki;Bessel, Michael S.;Onaka, Takashi;Kim, Hyun-Jeong;Jeong, Woong-Seob;Gaensler, Bryan;Im, Myung-Shin;Lee, Ho-Gyu;Lee, Jae-Joon;Tatematsu, Ken'ichi;Kohno, Kotaro;Ezawa, Ryohei;Ezawa, Hajime;Yun, Min-S.;Hughes, David H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.57-57
    • /
    • 2010
  • We report the discovery of a bright mid-infrared (MIR) source with prominent crystalline silicate emission using the space telescope AKARI and Spitzer. This source, IRAS 15099-5856, has a spectacular morphology with a bright central compact source (CCS) surrounded by knots, spurs, and several extended (~4') arc-like filaments. The source is seen only in infrared at ${\geq}10{\mu}m$. The Spitzer MIR spectrum of the CCS shows prominent emission features from Mg-rich crystalline silicates and strong [Ne II] 12.88 ${\mu}m$ and several other faint ionic lines. We model the MIR spectrum as thermal emission from several independent dust components and compare their properties to those of the Herbig Be star HD 100546 which shows very similar MIR spectrum. Our molecular line observations reveal two molecular clouds around the source, but no associated dense molecular cores. We discuss two possible origins for IRAS 15099-5856; a deeply embedded massive young stellar object on the other side of the Galaxy and a disrupted, protoplanetary disk being photoevaporated by the UV radiation from the nearby O star Muzzio 10.

  • PDF