• Title/Summary/Keyword: Radiation sensor

Search Result 426, Processing Time 0.025 seconds

Measurement of Linear Energy Spectra for 135 MeV/u Carbon Beams in HIMAC Using Prototype TEPC (프로토 타입 조직등가비례계수기의 중입자가속기연구소의 135 MeV/u 탄소 이온에 대한 선형에너지 스펙트럼 측정)

  • Nam, Uk-Won;Lee, Jaejin;Pyo, Jeonghyun;Park, Won-Kee;Moon, Bong-Kon;Lim, Chang Hwy;Moon, Myung Kook;Kitamure, Hisashi;Kobayashi, Shingo;Kim, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.197-201
    • /
    • 2014
  • TEPC (Tissue Equivalent Proportional Counter) was usually used for high LET radiation dosimetry. We developed a prototype TEPC for micro-dosimetry in the range of $0.2{\sim}300 keV/{\mu}m$. And, the simulated site diameter of the TEPC is $2{\mu}m$, of similar size to a cell nucleus. For purposes of characterization the response for high LET radiation of the TEPC has been investigated under 135MeV/u Carbon ions in HIMAC (Heavy Ion Medical Accelerator). We determined the gas multiplication factor and measured the lineal energy spectrum [yd(y)] of 135 MeV/u Carbon ions. The value of the gas multiplication factor was 315 at 700 V bias voltage. As a result of the experiment, we could more understand the performance of the TEPC for high LET (Linear Energy Transfer) radiation. And the procedure of high LET radiation dosimetry using TEPC is established.

The Characteristics of Two-dimensional Radiation Monitoring System (2차원 방사선준위 분포측정 시스템의 제작 및 특성 조사)

  • Kim, S.H.;Han, S.H.;Kim, K.R.;Kang, H.D.;Choi, Y.S.;Lee, Y.B.;Lee, J.M.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.290-297
    • /
    • 1997
  • In this study, the radiation monitoring system using CsI(TI) scintillation counter is developed for the measurement of radiation distribution in the field of high dose level. When the inner diameter of collimator is 8 mm, we have realized the optimum detecting efficiency and spatial resolution. At that time, the position resolution was 10 cm at 1 m from the system. And experimental results indicated that the energy resolution of the system were 10 % for 662 keV of Cs-137, 7.6 % for 1.17 MeV of Co-60, and 5.8 % for 1.33 MeV of Co-60. Also, we have shown that the real radiation distribution images may be obtained by our measurement system.

  • PDF

Preliminary Study on Rapid Measurement of Gross Alpha/Beta and 90Sr Activities in Surface Soil by Mobile ZnS(Ag)/PTV Array and Handheld PVT Rod with Gated Energy Channels

  • Lee, Chanki;Kim, Hee Reyoung
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.194-203
    • /
    • 2021
  • Background: Surface soil radiation monitoring around nuclear facilities is important to classify and characterize the contaminated areas. A scanning and direct measurement technique can survey the sites rapidly before starting sampling analysis. Materials and Methods: Regarding this, we test and suggest a measurement technique for gross alpha/beta and 90Sr activities in surface soil based on a mobile ZnS(Ag)/PVT (polyvinyltoluene) array and a handheld PVT rod, respectively. To detect 90Sr selectively in soil mixed with naturally occurring radioactive materials, chosen energy channel counts from the multichannel analyzers were used instead of whole channel counts. Soil samples contaminated with exempt liquid 90Sr with 1 Bq·g-1, 3 Bq·g-1, and 10 Bq·g-1 were prepared and hardened by flocculation. Results and Discussion: The mobile ZnS(Ag)/PVT array could discriminate gross alpha, gross beta, and gamma radiation by the different pulse-shaped signal features of each sensor material. If the array is deployed on a vehicle, the scan minimum detectable concentration (MDC) range will be about 0.11-0.17 Bq·g-1 at 18 km·h-1 speed, highly sensitive to actual sites. The handheld PVT rod with 12 mm (Φ) × 20 mm (H) size can directly measure 90Sr selectively if channels on which energies are from 1,470 and 2,279 keV are gated, minimizing crossdetection of other radionuclides. These methods were verified by measuring soil samples fabricated with homogeneous 90Sr concentrations, showing static MDC of 2.16 Bq·g-1 at a measurement time of 300 seconds. Conclusion: Based on the results, comprehensive procedures using these detectors are suggested to optimize soil sites survey.

Characteristics Analysis of SiPM for Detection of High Sensitivity of Portable Detectors (휴대용 검출기의 방사선 고감도 검출을 위한 SiPM 특성 분석)

  • Byung-Wuk Kang;Sun-Kook Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.897-902
    • /
    • 2023
  • The purpose of this paper is to analyze the characteristics of Silicon Photomultiplier (SiPM) for the realization of high-sensitivity radiation detection in portable detectors. Portable X-ray detectors offer the advantage of quickly accessing the patient's location and obtaining real-time images, allowing physicians to perform rapid diagnoses. However, this mobility comes with challenges in achieving accurate radiation detection. In existing detectors, SiPM is used for a simple purpose of detecting X-ray triggers. To verify the feasibility of high-sensitivity X-ray detection through SiPM, seven types of SiPM sensors were compared and selected, and their characteristics were analyzed. The SiPM used in the final test demonstrated the ability to distinguish signals at the ultra-low radiation level of 10 nGy, and it was observed that the slope of the signal rise curve varies with the X-ray tube voltage. Utilizing the characteristics of SiPM, which exhibits changes in signal level and duration with X-ray dose, it appears possible to achieve high-sensitivity measurements for X-ray detection.

Development and Performance of a Hand-Held CZT Detector for In-Situ Measurements at the Emergency Response

  • Ji, Young-Yong;Chung, Kun Ho;Kim, Chang-Jong;Yoon, Jin;Lee, Wanno;Choi, Geun-Sik;Kang, Mun Ja
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.87-91
    • /
    • 2016
  • Background: A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. Materials and Methods: To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. Results and Discussion: The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. Conclusion: The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.

Development of Optimal Control of Heliostat System Using Configuration Factor and Solar Tracking Device (형상계수와 태양추적장치를 이용한 헬리오스타트 제어 시스템 개발)

  • Lee, Dong Il;Jeon, Woo Jin;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1177-1183
    • /
    • 2012
  • This study aims to develop a system that maximizes the radiative heat transfer from the heliostat to the receiver by using the configuration factor and a solar tracking device. As the heat transfer from the heliostat to the receiver is delivered by solar radiation, the configuration factor commonly utilized for radiation is applied to control the heliostat. Tracking the sun and calculating its position are possible by using an illuminance sensor (CdS) and Simulink. By applying optimized algorithms programmed using Simulink that maximize the configuration factors among the heliostat, receiver, and sun in real time, the solar absorption efficiency of the receiver can be maximized. Simulations were performed on how to change the angle required to control the elevation and azimuthal angle of the heliostat during the daytime with respect to various distances.

Applicability of Daily Solar Radiation Estimated by Mountain Microclimate Simulation Model (MT-CLIM) in Korea (MT-CLIM 프로그램을 이용한 일별 일사량 추정의 국내 적용성 검토)

  • Shim, Kyo Moon;Kim, Yong Seok;Lee, Deog Bae;Kang, Ki Keong;So, Kyo-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.260-264
    • /
    • 2012
  • Accuracy of daily solar radiation estimated from a Mountain Microclimate Simulation Model (MT-CLIM) was assessed for seven observation sites with complex topography in Uiseong County. The coefficient of determination ($R^2$) between the observed and the estimated daily solar radiation was 0.52 for 7 sites for the study period from 1 August to 30 September 2009. Overall, the MT-CLIM overestimated the solar radiation with root mean square error (RMSE) of $3.83MJ\;m^{-2}$ which is about 25% of the mean daily solar radiation ($15.27MJ\;m^{-2}$) for the study period. Considering that the pyranometer's tolerance is ${\pm}5%$ of standard sensor, the RMSE of MT-CLIM was too large to accept for a direct application for agricultural sector. The reliability of solar radiation estimated by MT-CLIM must be improved by considering additional ways such as using a topography correction coefficient.

Life assessment of monitoring piezoelectric sensor under high temperature at high-level nuclear waste repository (고준위방사성폐기물 처분장 고온 환경 조건에 대한 모니터링용 피에조 센서의 수명 평가)

  • Changhee Park;Hyun-Joong Hwang;Chang-Ho Hong;Jin-Seop Kim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.509-523
    • /
    • 2023
  • The high-level nuclear waste (HLW) repository is exposed to complex environmental conditions consisting of high temperature, high humidity, and radiation, resulting in structural deterioration. Therefore, structural health monitoring is essential, and piezo sensors are used to detect cracks and estimate strength. However, since the monitoring sensors installed in the disposal tunnel and disposal container cannot be replaced or removed, the quantitative life of the monitoring sensor and its suitability must be assessed. In this study, the life of a piezo sensor for monitoring was assessed using an accelerated life test (ALT). The failure mode and mechanism of the piezo sensor under high temperature conditions were determined, and temperature stress's influence on the piezo sensor's life was analyzed. ALT was conducted on temperature stress and the relationship between temperature stress and piezo sensor life was suggested. The life of the piezo sensor was assessed using the Weibull probability distribution and the Arrhenius acceleration model. The suggested relationship can be used in multiple stress ALT designs for more precise life assessment.

A Study on the Control of the Exhaust CO from Gas Boiler (가스보일러 일산화탄소 제어에 관한 연구)

  • Jo Young-Do;Choi Kyoung-Suhk;Kim Ji-Yoon;Kim Chang-Yeon
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • In this work, the chemical composition of the exhaust gas from domestic gas boiler has been analysed in the point of thermodynamics and CO sensor has been characterized. We proposed that the combustion condition can be estimated by the exhaust gas composition, i.e., the excess air ratio and combustion temperature can be calculated simply by the measurement of the $O_{2}$ fraction and $H_{2}/CO$ in the exhaust gas. By analyse the on site situation domestic boiler, the excess air ratio is about $55\~110\%$. Therefore, the CO may be produced in domestic gas boiler by luminous(yellow) flames rapidly lose heat by radiation, turbulent flames may be partially quenched by the action of steep velocity gradients, and flames burning very close to a cold wall may be partial1y quenched by heat conductivity to the wall. The output voltage of CO sensor is lineally depend on the CO and $H_{2}$concentration. And the exhaust CO from boiler can be reduced by closed loop control with CO sensor

  • PDF

The Fabrication and Property Evaluation of Poly-crystalline CdTe based Photon Counting X-ray Sensor (다결정 CdTe 기반의 광계수형 X선 센서 제작 및 특성평가)

  • Kang, Sang Sik;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.439-443
    • /
    • 2015
  • An electrical signals of a conventional radiation medical imaging sensor are obtained by charge integration method. In this study, the polycrystalline cadmium telluride(p-CdTe) film was fabricated by a thermal evaporation method for the photon counting sensor development with excellent resolution in low exposure dose. From the fabricated p-CdTe sensor, the physical properties(SEM, XRD) and the electrical properties(leakage current, x-ray sensitivity, SNR) were evaluated. As a result, the leakage current of below $5nA/cm^2$ and $7{\mu}C/cm^2-R$ of the X-ray sensitivity were showed in below $1V/{\mu}m$. In addition, the signal to noise ratio showed the values of above 5000 at operating voltage.