• Title/Summary/Keyword: Radiation pressure

Search Result 681, Processing Time 0.025 seconds

The reconstruction of Structure Velocity Field Using Nearfield Acoustic Holography (근접음장 음향 홀로그래피를 이용한 평판내의 속도분포 예측)

  • 권오훈;이효근;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 1994
  • Nearfield acoustic holography is known as a powerful tool to study sound radiation from a structure. In this work, the so called backward propagation of sound pressure field is studied to obtain the structure velocity distribution. The results, which were obtained using FFT algorithms, are presented for a finite plate excited at the frequencies above and below coincidence. These results illustrate the effect of stand-off distance and noise. An optimum cutoff frequency in wavenumber domain was suggested to reduce the effects of evanescent wave in the backward propagation. The experimental results were also included for a plate to demonstrate the effectiveness of the suggested cutoff frequency. The optimum cutoff frequency to exclude the unwanted noise in the process of reconstruction of the velocity field gives the good results in both simulations and experiments.

Finite Element Analysis of Combustion Reaction on Iron and Metal Oxides Interface (Fe-금속 산화물 계면에서 연소반응의 유한 요소해석)

  • Gu, Mun-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.118.2-118.2
    • /
    • 2017
  • Combustion behavior of Fe, CuO, NiO, ZnO and $Fe_2O_3$ powder mixture was carried out by finite element method (FEM) to understand a reaction at iron and metal oxide interface. The FEM was done by using ANSYS Fluent 17.0. Initial and boundary conditions are 1 atmosphere, room temperature, 0.1MPa of oxygen partial pressure, $T_{S1}=1127^{\circ}C$, $T_{S2}=327^{\circ}C$ for a cylindrical shape specimen with dia. $35{\times}80$ [mm]. The maximum combustion temperature is $1537^{\circ}C$ for the condition of conduction, convection and radiation. The combustion temperature and rate are about $847^{\circ}C$ and 3.9mm/sec, respectively. The combustion wave is enough to make ternary ferrite phase like $CuNiZnFe_2O_3$.

  • PDF

DUST GRAINS IN THE ENVELOPES OF INFRARED CARBON STARS

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.183-192
    • /
    • 1992
  • We have investigated the properties of dust grains in the envelopes of infrared carbon stars by testing various radiative transfer model spectra with different stellar and enveloped parameters. We have deduced a new opacity pattern for the dust grains reflecting both the experimental data and the model fitting with recent infrared observations. The best pattern we find is very similar to amorphous carbon with a slight modification that could be attributed to some unknown dust grain materials. Unlike oxygen-rich dust grains, the optical properties of carbon grains do not show any reasonable tendency of temperature dependence. We find that the Planck mean values of radiation pressure efficiency factors for the modified amorphous carbon are much larger than those for graphite.

  • PDF

A study on the identification of dynamic characteristics of tennis racket by acoustic intensity method (음향 인텐시터법을 이용한 테니스 라켓의 동특성에 관한 연구)

  • 오재응;이유엽;염성하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.601-610
    • /
    • 1986
  • The acoustic intensity in the very near field of a vibrating surface reveals information about the location of sound sources and sinks. A system model of tennis racket was developed from simultaneous measurement of excitation force, surface vibration and the near field sound pressure. The characteristics of structural dynamics were obtained by standard experimental modal analysis techniques while the sound radiation characteristics were determined by estimating the acoustic intensity. In this paper, the information about vibration behviour was obtained by acoustic intensity method and some, experiments for verification were carried out. Close correlation was found between experimentally determined acoustic intensity and vibration mode patterns of the tennis racket.

Using Leaf Temperature for Irrigation Scheduling in Greenhouse (온실작물의 관개계획의 수립을 위한 엽온의 활용)

  • 이남호;이훈선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.103-112
    • /
    • 2001
  • The development of infrared thermometry has led many researchers to use plant temperatures, and specifically the temperature of the crop canopy in the field, for estimating the water stress of a crop. The purpose of this study was to evaluate the role of leaf temperature in irrigation scheduling. An experiment was carried out in a greenhouse with chinese cabbage. Leaf temperature was measured with infrared thermometry and evapotranspiration of the crop was measured by lysimeters. Influence of the difference between leaf temperature and air temperature on crop evapotranspiration was evaluated under varying water stress condition. A further objective was to evaluate the effect of other climatic variables on the relationship between evapotranspiration and temperature difference between leaf and air. A statistical model for estimating evapotranspiration using the temperature difference, relative humidity. and radiation was developed and tested. Crop water stress index was calculated using vapour pressure deficit and the temperature difference. Relations between the crop water stress index and crop evapotranspiration was tested. The index was closely related with evapotranspiration.

  • PDF

Suppression of Sound Transmission through Composite Plate into Cavity with Anisotropic Piezoelectric Actuators (이방성 압전 작동기를 이용한 복합재료 평판을 통한 공동내의 소음 억제)

  • 윤기원;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.695-700
    • /
    • 1997
  • A direct boundary element method(DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adopted simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absorbing material.

  • PDF

Development of the direct boundary element method for thin bodies with general boundary conditions (일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발)

  • 이강덕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.701-708
    • /
    • 1997
  • A direct boundary element method(DBEM) is developed for thin bodies whose surfaces are rigid or compliant. Th eHelmholtz integral equation and its normal derivative integral equation are adopted simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discontinuous across the thin body. In this approach, only the neural surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absorbing material.

  • PDF

Vacuum Chamber Design for the PLS Storage Ring (포항 가속기 저장링 진공 chamber 설계)

  • 김창균;길계환;최우천;박수용
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.24-27
    • /
    • 1992
  • The Pohang Accelerator Lab is constructing a 2 GeV synchrotron radiation source. In order to achieve a beam lifetime of 5 hours or more, the average pressure in the vacuum chamber will be kept in the nano Torr range. Each chamber consists of a top and a bottom piece, which are machined separately and welded together. The chamber material is A1 5083-H321. The pumping system has nine sets of lumped NEGs in tandem with ion pumps installed beneath photon stops, and six ion pumps per superperiod. A prototype chamber will be machined by February 1992. After various tests with the prototype chamber, the vacuum chamber design will be refined.

  • PDF

Biodeterioration of Cultural Property and Fumigation (문화재의 생물열화 방제-훈증처리를 중심으로)

  • Lee, Ho-Bong
    • 보존과학연구
    • /
    • s.13
    • /
    • pp.69-80
    • /
    • 1992
  • A great numbers of cultural properties destroyed though attack by insect pests and microorganisms. Biodeterioration damage is particularly serious in this country because many cultural propertiese are made of organic materials. Recently, there are various countermeasures of biodeterioration or alternative methods are reported, such as Gamma Radiation, Micro-wave Irridation, Freezing, Inert Atmosphere (Oxygen-less atmosphere), and Environmental Control. However its practical application are limited and some difficulties for treatment of large objects. Fumigation is one of the most useful and effective methods of control biodeterioration because it gives less damage of cultural properties but rapidly eradicate infesting organisms at one action. This paper evaluated selected fumigants and fumigation methods with emphasis on the following paragraph:1) Effectiveness of selected fumigants on insects and microbes involved inbiodeterioration.2) Physical and chemical characters of selected fumigants.3) Less toxic new alternative fumigant and its mixtures.4) Inert atmosphere (Oxygen-less atmosphere)5) Methods of fumigation : Sealed fumigation, Covered fumigation and Vacuum fumigation (Reduced-pressure fumigation)

  • PDF

Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field

  • Abrar, Muhammad N.;Haq, Rizwan Ul;Awais, Muhammad;Rashid, Irfan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1680-1688
    • /
    • 2017
  • In this study, analysis is performed on entropy generation during cilia transport of water based titanium dioxide nanoparticles in the presence of viscous dissipation. Moreover, thermal heat flux is considered at the surface of a channel with ciliated walls. Mathematical formulation is constructed in the form of nonlinear partial differential equations. Making use of suitable variables, the set of partial differential equations is reduced to coupled nonlinear ordinary differential equations. Closed form exact solutions are obtained for velocity, temperature, and pressure gradient. Graphical illustrations for emerging flow parameters, such as Hartmann number (Ha), Brinkmann number (Br), radiation parameter (Rn), and flow rate, have been prepared in order to capture the physical behavior of these parameters. The main goal (i.e., the minimizing of entropy generation) of the second law of thermodynamics can be achieved by decreasing the magnitude of Br, Ha and ${\Lambda}$ parameters.