• Title/Summary/Keyword: Radiation memory function

Search Result 14, Processing Time 0.027 seconds

Numerical Study of the Radiation Potential of a Ship Using the 3D Time-Domain Forward-Speed Free-Surface Green Function and a Second-Order BEM (3 차원 시간영역 전진속도 자유표면 Green 함수와 2 차 경계요소법을 사용한 선체의 방사포텐셜 수치계산)

  • Hong, Do-Chun;Hong, Sa-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.258-268
    • /
    • 2008
  • The radiation potential of a ship advancing in waves is studied using the 3D time-domain forward-speed free-surface Green function and the Green integral equation. Numerical solutions are obtained by making use of the 2nd order BEM(Boundary Element Method) which make it possible to take account of the line integral along the waterline in a rigorous manner. The 6 degree of freedom motion memory functions of a hemisphere and the Wigley seakeeping model obtained by direct integration of the time-domain 3D potentials over the wetted surface are presented for various Froude numbers.

Development of proton test logic of RFSoC and Evaluation of SEU measurement (RFSoC의 양성자 시험 로직 개발 및 SEU 측정 평가)

  • Seung-Chan Yun;Juyoung Lee;Hyunchul Kim;Kyungdeok Yu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.97-101
    • /
    • 2024
  • In this paper, we present the implementation of proton beam irradiation test logic and test results for Xilinx's RFSoC FPGA. In addition to the FPGA function, RFSoC is a chip that integrates CPU, ADC, and DAC and is attracting attention in the defense and space industries aimed at reducing the size of the chip. In order to use these chips in a space environment, an analysis of radiation effects was required and radiation mitigation measures were required. Through the proton irradiation test, the logic to measure the radiation effect of RFSoC was designed. Logic for comparing values stored in memory with normal values was implemented, and protons were irradiated to RFSoC to measure SEU generated in the block memory area. To alleviate the occurrence of SEU in other areas, TMR and SEM were applied and designed. Through the test results, we intend to verify this test configuration and establish an environment in which logic design for satellites can be verified in the future.

Dynamic Wave Response Analysis of Floating Bodies in the Time-domain

  • Watanabe, Eiichi;Utsunomiya, Tomoaki;Yoshizawa, Nao
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • This paper presents a method to predict dynamic responses of floating bodies in the time domain. Because of the frequency-dependence of the radiation wave forces, the memory effect must be taken into account when the responses are evaluated in the time domain. Although the formulations firstly developed by Cummins (1962) have been well-known for this purpose, the effective numerical procedure has not been established yet. This study employs FFT (Fast Fourier Transform) algorithm to evaluate the memory effect function, and the equations of motion of an integro-differential type are solved by Newmark-β method. Numerical examples for a truncated circular cylinder have indicated the effectiveness of the proposed numerical procedure.

  • PDF

Development of Portable Memory Type Radiation Alarm Monitor (휴대용 메모리형 방사선 경보장치 개발)

  • Son, Jung-Kwon;Lee, Myung-Chan;Song, Myung-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.263-272
    • /
    • 1997
  • A Radiation Alarm Monitor has been developed and manufactured in order to protect radiation workers from over-exposure. A visual and audible alarm system has been attached to initiate evacuation when accident occurs such as an unexpected change of radiation level or an over-exposure. The Radiation Alarm Monitor installed with microprocessor can record the information of radiation field change between 90 min. before the alarm and 30 min. after the alarm and also provide the data to an IBM compatible computer to analyze the accidents and to set a counterplan. It features a wide detection range of radiation field(10 mR/h-100 R/h), radiation field data storage, portability, high precision (${\pm}5%$) due to self-calibration function, and adaption of a powerful alarm system. According to ANSI N42.17A, the most stringent test standards, performance tests were carried out under various conditions of temperature, humidity, vibration, and electromagnetic wave hindrance at Korea Research Institute of Standards & Science (KRISS). As a result, the Radiation Alarm Monitor passed all tests.

  • PDF

A Study on the Memory Effect of the Radiation Forces in the Maneuvering Motion of a Ship (선박(船舶)의 파랑중(波浪中) 조종운동(操縱運動)에 있어서 동유체력(動流體力)에 의한 메모리 효과(效果))

  • Seung-Keon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.53-58
    • /
    • 1992
  • The memory effect in maneuvering motion is very small and usually neglected. But, considering the maneuvering motion in waves, we need to calculate the memory effect strictly. Meanwhile. it is popular to treat the wave exciting forces as the steady sinusoidal forces and simply add to the right-hand side of the equation of the motion. This paper treats the memory effect in maneuvering motion when we take the wave exciting forces as the simple external forces and discuss the validity of such treatments.

  • PDF

Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM (3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Sa-Young;Sung, Hong-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.

Design and Implementation of CTM for SAR Payload (위성 SAR 탑재체용 파형발생수신모듈 설계 및 제작)

  • Kim, Dong-Sik;Kim, Hyun-Chul;Yu, Kyung-deok;Heo, John;Woo, Jae-Choon;Lee, Sang-Gyu;Lee, Hyeon-Cheol;Ryu, Sang-Burm
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.119-125
    • /
    • 2022
  • In this paper, we present design, implementation and test results of CTM (Chirp Transceiver Module) EM (Engineering Model) for C-Band SAR (Synthetic Aperture Radar) Payload. The CTM is designed to operate dual frequency scan method that simultaneously operate two frequencies in each 50MHz bandwidth to achieve 120Km swath with 10m resolution at about 500Km altitude. The CTM used radiation tolerant RTG4 FPGA for space environment, and implemented with the Parallel DDS (PDDS) method which uses a small memory capacity compared to the memory-map method. Test results show high purity chirp signal generation and excellent IRF performance from received chirp signal after direct digital conversion.

Psychological Systematic Consideration of Breast Cancer Radiotherapy (유방암 방사선 치료 환자의 심리의 체계적 분석)

  • Yang, Eun-Ju;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.629-635
    • /
    • 2019
  • In term of the factors affecting psychosocial adjustment of breast cancer patients, their quality of life after surgical operation, radiation, and chemotherapy were systematically meta-analyzed. As a result, their qualities of life of the patients that had radiation therapy was the lowest right after the therapy, and gradually increased after the end of the therapy. However, after six months, their quality of life failed to reach the same level before the therapy. They had depression and side effects the most right after the therapy, and somewhat reduced them after the end of the therapy. In case of surgical operation, the more they were educated, the more they had psychosocial adjustment, and the more they had a medical examination and took out an insurance policy, the more they had psychosocial adjustment. In case of chemotherapy, their cognitive function is influenced so that they have impairments in memory, learning, and thinking stages. Since subjective cognitive impairment has a relationship with depression, it is necessary to monitor depression of chemotherapy patients. Given the results of this systematic meta-analysis, when three types of therapies (surgical operation, radiation therapy, and chemotherapy) are applied to patients with breast cancer, it is necessary to recognize their psychosocial adjustment, depression, anxiety, and quality of life in the nursing and radiation therapy fields and thereby to introduce an intervention program for a holistic approach.

Time Series Analysis of Gamma exposure rates in Gangneung Area (강릉 지역 공간 감마선량률의 시계열 분석)

  • Cha, Hohwan;Kim, Jaehwa
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • In this work, we investigate the statistical properties of gamma exposure rates using well-known analysis methods, such as Autocorrelation Function Analysis(ACF), Rescaled Range Analysis(R/S Analysis), and Detrended Fluctuation Analysis(DFA). Especially, DFA is an important method to reliably detect long-range correlations in non-stationary time series. Our data are measured by Gangneung regional radiation monitoring station over the period of 1998 to 2011. First, we find a crossover indicating two different governing regimes in fluctuations of gamma exposure rates. Within a year, they show a strong long-ranged memory while this property vanishes over the range of time period longer than one year. Second, our finding is very securely supported by a variety of analysis tools. Those tools yield many relevant exponents which satisfies the well known relation between them.

A LSTM Based Method for Photovoltaic Power Prediction in Peak Times Without Future Meteorological Information (미래 기상정보를 사용하지 않는 LSTM 기반의 피크시간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.4
    • /
    • pp.119-133
    • /
    • 2019
  • Recently, the importance prediction of photovoltaic power (PV) is considered as an essential function for scheduling adjustments, deciding on storage size, and overall planning for stable operation of PV facility systems. In particular, since most of PV power is generated in peak time, PV power prediction in a peak time is required for the PV system operators that enable to maximize revenue and sustainable electricity quantity. Moreover, Prediction of the PV power output in peak time without meteorological information such as solar radiation, cloudiness, the temperature is considered a challenging problem because it has limitations that the PV power was predicted by using predicted uncertain meteorological information in a wide range of areas in previous studies. Therefore, this paper proposes the LSTM (Long-Short Term Memory) based the PV power prediction model only using the meteorological, seasonal, and the before the obtained PV power before peak time. In this paper, the experiment results based on the proposed model using the real-world data shows the superior performance, which showed a positive impact on improving the PV power in a peak time forecast performance targeted in this study.