• 제목/요약/키워드: Radiation mechanisms: non-thermal

검색결과 12건 처리시간 0.027초

Thermal radiation and some physical combined effects on an asymmetric peristaltically vertical channel of nanofluid flow

  • Amira S. Awaad;Zakaria M. Gharsseldien
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.579-591
    • /
    • 2024
  • This study explained the effects of radiation, magnetic field, and nanoparticle shape on the peristaltic flow of an Upper-Convected Maxwell nanofluid through a porous medium in an asymmetric channel for a better understanding of cooling and heating mechanisms in the presence of magnetic fields. These phenomena are modeled mathematically as a system of non-linear differential equations, that are solved under long-wavelength approximation and low Reynolds number conditions using the perturbation method. The results for nanofluid and temperature described the behavior of the pumping characteristics during their interaction with (the vertical position, thermal radiation, the shape of the nanoparticle, and the magnetic field) analytically and explained graphically. Also, the combined effects of thermal radiation parameters and some physical parameters on pressure rise, pressure gradient, velocity, and heat distribution are pointed out. Qualitatively, a reverse velocity appears with combined high radiation and Grashof number or combined high radiation and low volume flow rate. At high radiation, the spherical nanoparticle shape has the greatest effect on heat distribution.

The Spectral Sharpness Angle of Gamma-ray Bursts

  • Yu, Hoi-Fung;van Eerten, Hendrik J.;Greiner, Jochen;Sari, Re'em;Bhat, P. Narayana;Kienlin, Andreas von;Paciesas, William S.;Preece, Robert D.
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.109-117
    • /
    • 2016
  • We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23−18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.

THE CONTRIBUTION TO THE EXTRAGALACTIC γ-RAY BACKGROUND BY HADRONIC INTERACTIONS OF COSMIC RAYS PRODUCING EUV EMISSION IN CLUSTERS OF GALAXIES

  • KUO PING-HUNG;BOWYER STUART;HWANG CHORNG- YUAN
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.597-600
    • /
    • 2004
  • A substantial number of processes have been suggested as possible contributors to the extragalactic $\gamma$-ray background (EGRB). Yet another contribution to this background will be emission produced in hadronic interactions of cosmic-ray protons with the cluster thermal gas; this class of cosmic rays (CRs) has been shown to be responsible for the EUV emission in the Coma Cluster of galaxies. In this paper we assume the CRs in the Coma Cluster is prototypic of all clusters and derive the contribution to the EGRB from all clusters over time. We examine two different possibilities for the scaling of the CR flux with cluster size: the number density of the CRs scale with the number density of the thermal plasma, and alternatively, the energy density of the CRs scale with the energy density of the plasma. We find that in all scenarios the EGRB produced by this process is sufficiently low that it will not be observable in comparison with other mechanisms that are likely to produce an EGRB.

THE QUEST FOR COSMIC RAY PROTONS IN GALAXY CLUSTERS

  • PFROMMER C.;ENSSLIN T. A.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.455-460
    • /
    • 2004
  • There have been many speculations about the presence of cosmic ray protons (CRps) in galaxy clusters over the past two decades. However, no direct evidence such as the characteristic $\gamma$-ray signature of decaying pions has been found so far. These pions would be a direct tracer of hadronic CRp interactions with the ambient thermal gas also yielding observable synchrotron and inverse Compton emission by additionally produced secondary electrons. The obvious question concerns the type of galaxy clusters most likely to yield a signal: Particularly suited sites should be cluster cooling cores due to their high gas and magnetic energy densities. We studied a nearby sample of clusters evincing cooling cores in order to place stringent limits on the cluster CRp population by using non-detections of EGRET. In this context, we examined the possibility of a hadronic origin of Coma-sized radio halos as well as radio mini-halos. Especially for mini-halos, strong clues are provided by the very plausible small amount of required CRp energy density and a matching radio profile. Introducing the hadronic minimum energy criterion, we show that the energetically favored CRp energy density is constrained to $2\%{\pm}1\%$ of the thermal energy density in Perseus. We also studied the CRp population within the cooling core region of Virgo using the TeV $\gamma$-ray detection of M 87 by HEGRA. Both the expected radial $\gamma$-ray profile and the required amount of CRp support this hadronic scenario.

HOW TO MONITOR AGN INTRA-DAY VARIABILITY AT 230GHZ

  • Kim, Jae-Young;Trippe, Sascha
    • 천문학회지
    • /
    • 제46권2호
    • /
    • pp.65-74
    • /
    • 2013
  • We probe the feasibility of high-frequency radio observations of very rapid flux variations in compact active galactic nuclei (AGN). Our study assumes observations at 230GHz with a small 6-meter class observatory, using the SNU Radio Astronomical Observatory (SRAO) as an example. We find that 33 radio-bright sources are observable with signal-to-noise ratios larger than ten. We derive statistical detection limits via exhaustive Monte Carlo simulations assuming (a) periodic, and (b) episodic flaring flux variations on time-scales as small as tens of minutes. We conclude that a wide range of flux variations is observable. This makes high-frequency radio observations-even with small observatories-a powerful probe of AGN intra-day variability; especially, those which complement observations at lower radio frequencies with larger observatories like the Korean VLBI Network (KVN).

INVESTIGATING THE PULSAR WIND NEBULA 3C 58 USING EMISSION MODELS

  • Kim, Seungjong;Park, Jaegeun;An, Hongjun
    • 천문학회지
    • /
    • 제52권5호
    • /
    • pp.173-180
    • /
    • 2019
  • We present IR flux density measurements, models of the broadband SED, and results of SED modeling for the Pulsar Wind Nebula (PWN) 3C 58. We find that the Herschel flux density seems to be slightly lower than suggested by interpolation of previous measurements in nearby wavebands, implying that there may be multiple electron populations in 3C 58. We model the SED using a simple stationary one-zone and a more realistic time-evolving multi-zone scenario. The latter includes variations of flow properties in the PWN (injected energy, magnetic field, and bulk speed), radiative energy losses, adiabatic expansion, and diffusion, similar to previous PWN models. From the modeling, we find that a PWN age of 2900-5400 yrs is preferred and that there may be excess emission at ${\sim}10^{11}Hz$. The latter may imply multiple populations of electrons in the PWN.

3D SIMULATIONS OF RADIO GALAXY EVOLUTION IN CLUSTER MEDIA

  • O'NEILL SEAN M.;SHEARER PAUL;TREGILLIS IAN L.;JONES THOMAS W.;RYU DONGSU
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.605-609
    • /
    • 2004
  • We present a set of high-resolution 3D MHD simulations exploring the evolution of light, supersonic jets in cluster environments. We model sets of high- and low-Mach jets entering both uniform surroundings and King-type atmospheres and propagating distances more than 100 times the initial jet radius. Through complimentary analyses of synthetic observations and energy flow, we explore the detailed interactions between these jets and their environments. We find that jet cocoon morphology is strongly influenced by the structure of the ambient medium. Jets moving into uniform atmospheres have more pronounced backflow than their non-uniform counterparts, and this difference is clearly reflected by morphological differences in the synthetic observations. Additionally, synthetic observations illustrate differences in the appearances of terminal hotspots and the x-ray and radio correlations between the high- and low-Mach runs. Exploration of energy flow in these systems illustrates the general conversion of kinetic to thermal and magnetic energy in all of our simulations. Specifically, we examine conversion of energy type and the spatial transport of energy to the ambient medium. Determination of the evolution of the energy distribution in these objects will enhance our understanding of the role of AGN feedback in cluster environments.

RADIO VARIABILITY AND RANDOM WALK NOISE PROPERTIES OF FOUR BLAZARS

  • PARK, JONG-HO;TRIPPE, SASCHA
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.433-437
    • /
    • 2015
  • We show the results of a time series analysis of the long-term light curves of four blazars. 3C 279, 3C 345, 3C 446, and BL Lacertae. We used densely sampled light curves spanning 32 years at three frequency bands (4.8, 8, 14.5 GHz), provided by the University of Michigan Radio Astronomy Observatory monitoring program. The spectral indices of our sources are mostly flat or inverted (-0.5 < ${\alpha}$ < 0), which is consistent with optically thick emission. Strong variability was seen in all light curves on various time scales. From the analyses of time lags between the light curves from different frequency bands and the evolution of the spectral indices with time, we find that we can distinguish high-peaking flares and low-peaking flares according to the Valtaoja et al. classification. The periodograms (temporal power spectra) of the light curves are in good agreement with random-walk power-law noise without any indication of (quasi-)periodic variability. We note that random-walk noise light curves can originate from multiple shocks in jets. The fact that all our sources are in agreement with being random-walk noise emitters at radio wavelengths suggests that such behavior is a general property of blazars. We are going to generalize our approach by applying our methodology to a much larger blazar sample in the near future.

INTRA-NIGHT OPTICAL VARIABILITY OF ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD WITH THE KMTNET

  • Kim, Joonho;Karouzos, Marios;Im, Myungshin;Choi, Changsu;Kim, Dohyeong;Jun, Hyunsung D.;Lee, Joon Hyeop;Mezcua, Mar
    • 천문학회지
    • /
    • 제51권4호
    • /
    • pp.89-110
    • /
    • 2018
  • Active Galactic Nucleus (AGN) variability can be used to study the physics of the region in the vicinity of the central black hole. In this paper, we investigated intra-night optical variability of AGN in the COSMOS field in order to understand the AGN instability at the smallest scale. Observations were performed using the KMTNet on three separate nights for 2.5 to 5 hours at a cadence of 20 to 30 min. We find that the observation enables the detection of short-term variability as small as ~ 0.02 and 0.1 mag for R ~ 18 and 20 mag sources, respectively. Using four selection methods (X-rays, mid-infrared, radio, and matching with SDSS quasars), 394 AGN are detected in the $4deg^2$ field of view. After differential photometry and ${\chi}^2$-test, we classify intra-night variable AGN. The fraction of variable AGN (0-8%) is statistically consistent with a null result. Eight out of 394 AGN are found to be intra-night variable in two filters or two nights with a variability level of 0.1 mag, suggesting that they are strong candidates for intra-night variable AGN. Still they represent a small population (2%). There is no sub-category of AGN that shows a statistically significant intra-night variability.

시분해 레이저 유도 백열법을 이용한 매연 입자 크기에 관한 수치적 연구 (Numerical Investigation on Soot Primary Particle Size Using Time Resolved Laser Induced Incandescence (TIRE-LII))

  • 이종호;김정용;정동수;장영준;전충환
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1022-1031
    • /
    • 2005
  • Temporal behavior of the laser induced incandescence (LII) signal is often used for soot particle sizing, which is possible because the cooling behavior of a laser heated particle is dependent on the particle size. In present study, LII signals of soot particles are modeled using two non-linear coupled differential equations deduced from the energy- and mass-balance of the process. The objective of this study is to obtain an appropriate calibration curve for determining primary particle size by comparing the gated signal ratio and double-exponential curve fitting methods. Not only the effects of laser fluence and gas temperature on the cooling behavior but also heat transfer mechanisms of heated soot particle have been investigated. The second-order exponential curve fitting showed better agreements with the LII signals than the gated signal ratio method which was based on the lust-order exponential curve fit. And the temporal decay rate of the LII signal and primary particle size showed nearly linear relationship, which was little dependent on the laser fluence. And it also could be reconfirmed that vaporization was dominant process of heat loss during first loons after laser pulse, then heat conduction played most important role while thermal radiation had little influence all the time.