Browse > Article
http://dx.doi.org/10.5303/JKAS.2019.52.5.173

INVESTIGATING THE PULSAR WIND NEBULA 3C 58 USING EMISSION MODELS  

Kim, Seungjong (Department of Astronomy and Space Science, Chungbuk National University)
Park, Jaegeun (Department of Astronomy and Space Science, Chungbuk National University)
An, Hongjun (Department of Astronomy and Space Science, Chungbuk National University)
Publication Information
Journal of The Korean Astronomical Society / v.52, no.5, 2019 , pp. 173-180 More about this Journal
Abstract
We present IR flux density measurements, models of the broadband SED, and results of SED modeling for the Pulsar Wind Nebula (PWN) 3C 58. We find that the Herschel flux density seems to be slightly lower than suggested by interpolation of previous measurements in nearby wavebands, implying that there may be multiple electron populations in 3C 58. We model the SED using a simple stationary one-zone and a more realistic time-evolving multi-zone scenario. The latter includes variations of flow properties in the PWN (injected energy, magnetic field, and bulk speed), radiative energy losses, adiabatic expansion, and diffusion, similar to previous PWN models. From the modeling, we find that a PWN age of 2900-5400 yrs is preferred and that there may be excess emission at ${\sim}10^{11}Hz$. The latter may imply multiple populations of electrons in the PWN.
Keywords
pulsars: general; ISM: individual objects: 3C 58; radiation mechanisms: non-thermal;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Green, D. A., & Scheuer, P. A. G. 1992, Upper Limits on the Infrared Flux Density of the Filled-centre Supernova Remnant 3C 58, MNRAS, 258, 833   DOI
2 Kang, H., 2010, Cosmic Ray Spectrum in Supernova Remnant Shocks, JKAS, 43, 25
3 Kargaltsev, O., Klingler, N., Chastain, S., & Pavlov, G. G. 2017, Toward Understanding the Physical Underpinnings of Spatial and Spectral Morphologies of Pulsar Wind Nebulae, J. Phys. Conf. Ser., 012050
4 Kennel, C. F., & Coroniti, F. V. 1984, Confinement of the Crab Pulsar's Wind by Its Supernova Remnant, ApJ, 283, 694   DOI
5 Kim, M., & An, H., 2019, Measuring Timing Properties of PSR B0540-69, JKAS, 52, 41
6 Lemoine, M., Kotera, K. & Petri, J. 2015, On Ultra-high Energy Cosmic Ray Acceleration at the Termination Shock of Young Pulsar Winds, JCAP, 7, 16   DOI
7 Li, J., Torres, D. F., Lin, T. T., et al. 2018, Observing and Modeling the Gamma-ray Emission from Pulsar/Pulsar Wind Nebula Complex PSR J0205+ 6449/3C 58, ApJ, 858, 84   DOI
8 Longair, M. S. 2011, High Energy Astrophysics (Cambridge: Cambridge University Press)
9 Lyutikov, M., Temim, T., Komissarov, S., et al. 2018, Interpreting Crab Nebula's Synchrotron Spectrum: Two Acceleration Mechanisms, MNRAS, 489, 2
10 Madsen, K. K., Reynolds, S., Harrison, F., et al. 2015, Broadband X-ray Imaging and Spectroscopy of the Crab Nebula and Pulsar with NuSTAR, ApJ, 801, 66   DOI
11 Porth, O., Vorster M. J., Lyutikov, M. and Engelbrecht N. E. 2016, Diffusion in Pulsar Wind Nebulae: An Investigation Using Magnetohydrodynamic and Particle Transport Models, MNRAS, 460, 4135   DOI
12 Nguyen, H. T., Schulz, B., Levenson, L., et al. 2010, HerMES: The SPIRE Confusion Limit, A&A, 518, L5   DOI
13 Nynka, M., Hailey, C. J., Reynolds, S. P., et al. 2014, NuSTAR Study of Hard X-ray Morphology and Spectroscopy of PWN G21.5-0.9, ApJ, 789, 72   DOI
14 Pacini, F., & Salvati, M. 1973, On the Evolution of Supernova Remnants. Evolution of the Magnetic Field, Particles, Content, and Luminosity, ApJ, 186, 249   DOI
15 Reynolds, S. P. 2009, Synchrotron-loss Spectral Breaks in Pulsar-wind Nebulae and Extragalactic Jets, ApJ, 703, 662   DOI
16 Roberts, D. A., Goss, W. M., Kalberla, P. M. W., et al. 1993, High Resolution Hi Observations of 3C 58, A&A, 274, 427
17 Sironi, L., Keshet, U. & Lemoine, M. 2015, Relativistic Shocks: Particle Acceleration and Magnetization, SSRv, 191, 519
18 Slane, P. O., Helfand, D. J., & Murray, S. S. 2002, New Constraints on Neutron Star Cooling from Chandra Observations of 3C 58, ApJ, 571, L45   DOI
19 Slane, P. O., Helfand, D. J., van der Swaluw, E. & Murray, S. S. 2002, New Constraints on the Structure and Evolution of the Pulsar Wind Nebula 3C 58, ApJ, 616, 403
20 Slane, P. O., Helfand, D. J., Reynolds, S. P., et al. 2008, The Infrared Detection of the Pulsar Wind Nebula in the Galactic Supernova Remnant 3C 58, ApJ, 676, L33   DOI
21 Torres, D. F., Cillis, A. N. & Martin Rodriguez, J. 2013, An Energy-conserving, Particle-dominated, Time-dependent Model of 3C 58 and Its Observability at High Energies, ApJ, 763, L4   DOI
22 Stephenson, F. R. 1971, A Suspected Supernova in AD 1181. IAU Colloq., 8, 10 (Cambridge: Cambridge University Press)
23 Tanaka, S. J., & Takahara, F. 2013, Properties of Young Pulsar Wind Nebulae: TeV Detectability and Pulsar Properties, MNRAS, 429, 2945   DOI
24 Tang, X., & Chevalier, R. A. 2012, Particle Transport in Young Pulsar Wind Nebulae, ApJ, 752, 83   DOI
25 Valtchanov, I. 2017, The Spectral and Photometric Imaging Receiver (SPIRE) Handbook, Herschel Explanatory Supplement, https://www.cosmos.esa.int/web/herschel/legacy-documentation-spire
26 Yuksel, H., Kistler, M. D. & Stanev, T. 2009, TeV Gammarays from Geminga and the Origin of the GeV Positron Excess, Phys. Rev. Lett., 103, 051101   DOI
27 An, H. 2019, NuSTAR Hard X-ray Studies of the Pulsar Wind Nebula 3C 58, ApJ, 876, 150   DOI
28 Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, Discovery of Pulsations from the Pulsar J0205+6449 in SNR 3C 58 with the Fermi Gamma-ray Space Telescope, ApJ, 699, L102   DOI
29 Aharonian, F. A., Bogovalov, S. V., and Khangulyan, D. 2012, Abrupt Acceleration of a 'Cold' Ultrarelativistic Wind from the Crab Pulsar, Nature, 482, 507   DOI
30 Aleksic, J., Ansoldi, S., Antonelli, L. A., et al. 2014, Discovery of TeV ${\gamma}$-ray Emission from the Pulsar Wind Nebula 3C 58 by MAGIC, A&A, 567, L8   DOI
31 Bietenholz, M. F. 2006, Radio Images of 3C 58: Expansion and Motion of Its Wisp, ApJ, 645, 1180   DOI
32 An, H., & Romani, R. W. 2017, Light Curve and SED Modeling of the Gamma-ray Binary 1FGL J1018.6-5856:Constraints on the Orbital Geometry and Relativistic Flow, Apj, 838, 145   DOI
33 An, H., Madsen, K. K., Reynolds, S. P., et al. 2014, Highenergy X-ray Imaging of the Pulsar Wind Nebula MSH 15-52: Constraints on Particle Acceleration and Transport, ApJ, 793, 90   DOI
34 Arnaud, M., Ashdown, M., Atrio-Barandela, F., et al. 2016, Planck Intermediate R esults - XXXI. Microwave Survey of Galactic Supernova Remnants, A&A, 586, A134   DOI
35 Dubus, G., Lamberts, A., & Fromang, S. 2015, Modelling the High-energy Emission from Gamma-ray Binaries Using Numerical Relativistic Hydrodynamics, A&A, 581, A27   DOI
36 Ciesla, L., Boselli, A., Smith, M. W. L., et al. 2012, Submillimetre Photometry of 323 Nearby Galaxies from the Herschel Reference Survey, A&A, 543, A161   DOI
37 De Looze, I., Barlow, M. J., Bandiera, R. et al. 2019, The Dust Content of the Crab Nebula, MNRAS, 488, 164   DOI
38 Drury, L. O. 1983, An Introduction to the Theory of Diffusive Shock Acceleration of Energetic Particles in Tenuous Plasmas, Rep. Prog. Phys., 46, 973   DOI
39 Finke, J. D., Dermer, C. D., & Bottcher, M. 2008, Synchrotron Self-Compton Analysis of TeV X-ray-selected BL Lacertae Objects, ApJ, 686, 181   DOI