DOI QR코드

DOI QR Code

INTRA-NIGHT OPTICAL VARIABILITY OF ACTIVE GALACTIC NUCLEI IN THE COSMOS FIELD WITH THE KMTNET

  • Kim, Joonho (Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Karouzos, Marios (Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Im, Myungshin (Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Choi, Changsu (Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Dohyeong (Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Jun, Hyunsung D. (School of Physics, Korea Institute for Advanced Study) ;
  • Lee, Joon Hyeop (Korea Astronomy and Space Science Institute) ;
  • Mezcua, Mar (Institute of Space Sciences (ICE, CSIC), Campus UAB)
  • Received : 2018.04.26
  • Accepted : 2018.07.11
  • Published : 2018.08.31

Abstract

Active Galactic Nucleus (AGN) variability can be used to study the physics of the region in the vicinity of the central black hole. In this paper, we investigated intra-night optical variability of AGN in the COSMOS field in order to understand the AGN instability at the smallest scale. Observations were performed using the KMTNet on three separate nights for 2.5 to 5 hours at a cadence of 20 to 30 min. We find that the observation enables the detection of short-term variability as small as ~ 0.02 and 0.1 mag for R ~ 18 and 20 mag sources, respectively. Using four selection methods (X-rays, mid-infrared, radio, and matching with SDSS quasars), 394 AGN are detected in the $4deg^2$ field of view. After differential photometry and ${\chi}^2$-test, we classify intra-night variable AGN. The fraction of variable AGN (0-8%) is statistically consistent with a null result. Eight out of 394 AGN are found to be intra-night variable in two filters or two nights with a variability level of 0.1 mag, suggesting that they are strong candidates for intra-night variable AGN. Still they represent a small population (2%). There is no sub-category of AGN that shows a statistically significant intra-night variability.

Keywords

References

  1. Abolfathi, B., Aguado, D. S., Aguilar, G., et al. 2017, The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment, arXiv:1707.09322
  2. Aranzana, E., Kording, E., Uttley, P., Scaringi, S., & Bloemen, S. 2018, Short Time-Scale Optical Variability Properties of the Largest AGN Sample Observed with Kepler/K2, MNRAS, 476, 2501 https://doi.org/10.1093/mnras/sty413
  3. Bachev, R., Strigachev A., & Semkov, E. 2005, Short-Term Optical Variability of High-Redshift Quasi-Stellar Objects, MNRAS, 358, 774 https://doi.org/10.1111/j.1365-2966.2005.08708.x
  4. Bertin, E., & Arnouts, S. 1996, SExtractor: Software for Source Extraction, A&AS, 117, 393 https://doi.org/10.1051/aas:1996164
  5. Bertin, E., Mellier, Y., Radovich, M., Missonnier, G., Didelon, P., & Morin, B. 2002, The TERAPIX Pipeline, ASPC, 281, 228
  6. Bertin, E. 2006, Automatic Astrometric and Photometric Calibration with SCAMP, ASPC, 351, 112
  7. Capak, P., et al. 2007, The First Release COSMOS Optical and Near-IR Data and Catalog, ApJS, 172, 99 https://doi.org/10.1086/519081
  8. Carini, M. T., Noble, J. C., & Miller, H. R. 2003, Microvariability in Seyfert Galaxies, AJ, 125, 1811 https://doi.org/10.1086/373930
  9. Carini, M. T., Noble J. C., Taylor, R., & Culler, R. 2007, Optical Microvariability in Radio-Quiet Quasars, AJ, 133, 303 https://doi.org/10.1086/509774
  10. Carini, M. T., & Ryle, W. T. 2012, Kepler Observations of the Seyfert 1 Galaxy II ZW 229.015, ApJ, 749, 70 https://doi.org/10.1088/0004-637X/749/1/70
  11. Chen, X.-Y., & Wang, J.-X. 2015, Analyses of the Variability Asymmetry of Kepler AGN, ApJ, 805, 80 https://doi.org/10.1088/0004-637X/805/1/80
  12. Civano, F., et al. 2012, The Chandra COSMOS Survey. III. Optical and Infrared Identification of X-Ray Point Sources, ApJS, 201, 30 https://doi.org/10.1088/0067-0049/201/2/30
  13. Czerny, B., Siemiginowska, A., Janiuk, A., & Gupta, A. C. 2008, The Nature of the Intranight Variability of Radio-Quiet Quasars, MNRAS, 386, 1557 https://doi.org/10.1111/j.1365-2966.2008.13131.x
  14. Damjanov, I., et al. 2018, hCOSMOS: A Dense Spectroscopic Survey of r ${\leq}$ 21.3 Galaxies in the COSMOS Field, ApJS, 234, 21 https://doi.org/10.3847/1538-4365/aaa01c
  15. De Cicco, D., Paolillo, M., Covone, G., et al. 2015, Variability-Selected Active Galactic Nuclei in the VSTSUDARE/VOICE Survey of the COSMOS Field, A&A, 574, A112 https://doi.org/10.1051/0004-6361/201424906
  16. de Diego, J. A. 2010, Testing Tests on Active Galactic Nucleus Microvariability, AJ, 139, 1269 https://doi.org/10.1088/0004-6256/139/3/1269
  17. Dobrotka, A., Antonuccio-Delogu, V., & Bajcicakova, I. 2017, New Structures of Power Density Spectra for Four Kepler Active Galactic Nuclei, MNRAS, 470, 2439 https://doi.org/10.1093/mnras/stx961
  18. Donley, J. L., et al. 2012, Identifying Luminous Active Galactic Nuclei in Deep Surveys: Revised IRAC Selection Criteria, ApJ, 748, 142 https://doi.org/10.1088/0004-637X/748/2/142
  19. Edelson, R., Vaughan, S., Malkan, M., et al. 2014, Discovery of a -5 Day Characteristic Timescale in the Kepler Power Spectrum of Zw 229-15, ApJ, 795, 2 https://doi.org/10.1088/0004-637X/795/1/2
  20. Frank, J., King, A., & Raine, D. J. 2002, Accretion Power in Astrophysics (Cambridge: Cambridge University Press)
  21. Gopal-Krishna, Gupta, A. C., Sagar, R., Wiita, P. J., Chaubey, U. S., & Stalin, C. S. 2000, Rapid Optical Variability in Radio-Quiet QSOs, MNRAS, 314, 815 https://doi.org/10.1046/j.1365-8711.2000.03446.x
  22. Gopal-Krishna, Stalin, C. S., Sagar, R., & Wiita, P. J. 2003, Clear Evidence for Intranight Optical Variability in Radio-Quiet Quasars, ApJ, 586, L25 https://doi.org/10.1086/374655
  23. Goyal, A., Gopal-Krishna, Joshi, S., Sagar, R., Wiita, P. J., Anupama, G. C., & Sahu, D. K. 2010, Optical Variability of Radio-Intermediate Quasars, MNRAS, 401, 2622 https://doi.org/10.1111/j.1365-2966.2009.15846.x
  24. Goyal, A., Gopal-Krishna, Wiita, P. J., Anupama, G. C., Sahu, D. K., Sagar, R., & Joshi, S. 2012, Intra-Night Optical Variability of Core Dominated Radio Quasars: the Role of Optical Polarization, A&A, 544, A37 https://doi.org/10.1051/0004-6361/201218888
  25. Goyal, A., Gopal-Krishna, Wiita, P. J., Stalin, C. S., & Sagar, R. 2013a, Improved Characterization of Intranight Optical Variability of Prominent AGN Classes, MNRAS, 435, 1300 https://doi.org/10.1093/mnras/stt1373
  26. Goyal, A., Mhaskey, M., Gopal-Krishna, Wiita, P. J., Stalin, C. S., & Sagar, R. 2013b, On the Photometric Error Calibration for the Differential Light Curves of Point-Like Active Galactic Nuclei, JA&A, 34, 273
  27. Gupta, A. C., & Joshi, U. C. 2005, Intra-Night Optical Variability of Luminous Radio-Quiet QSOs, A&A, 440, 855 https://doi.org/10.1051/0004-6361:20042370
  28. Ilbert, O., Capak, P., Salvato, M., et al. 2009, Cosmos Photometric Redshifts with 30-Bands for 2-$deg^2$, ApJ, 690, 1236 https://doi.org/10.1088/0004-637X/690/2/1236
  29. Ivezic, Z., Menou, K., Knapp, G. R., et al. 2002, Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey, AJ, 124, 2364 https://doi.org/10.1086/344069
  30. Jang, M., & Miller, H. R. 1995, The Examination of Optical Microvariability in Radio-Quiet and Radio-Loud Quasi-Stellar Objects, ApJ, 452, 582 https://doi.org/10.1086/176330
  31. Jang, M., & Miller, H. R. 1997, The Microvariability of Selected Radio-Quiet and Radio-Loud QSOs, AJ, 114, 565 https://doi.org/10.1086/118493
  32. Joshi, R., Chand, H., Gupta, A. C., & Wiita P. J. 2011, Optical Microvariability Properties of BALQSOs, MNRAS, 412, 2717 https://doi.org/10.1111/j.1365-2966.2010.18099.x
  33. Juric, M., et al. 2015, The LSST Data Management System, arXiv:1512.07914
  34. Kasliwal, V. P., Michael, S. V., & Gordon, T. R. 2015, Are the Variability Properties of the Kepler AGN Light Curves Consistent with a Damped Random Walk?, MNRAS, 451, 4328 https://doi.org/10.1093/mnras/stv1230
  35. Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNet: A Network of 1.6m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, 49, 37
  36. Klimek, E. S., Gaskell, C. M., & Hedrick, C. H. 2004, Optical Variability of Narrow-Line Seyfert 1 Galaxies, ApJ, 609, 69 https://doi.org/10.1086/420809
  37. Kumar, P., Chand, H., & Gopal-Krishna. 2016, Intranight Optical Variability of Radio-Quiet Weak Emission Line Quasars - IV, MNRAS, 461, 666 https://doi.org/10.1093/mnras/stw1374
  38. Lacy, M., Storrie-Lombardi, L. J., Sajina, A., et al. 2004, Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey, ApJS, 154, 166 https://doi.org/10.1086/422816
  39. Lilly, S. J., et al. 2009, The zCOSMOS 10k-Bright Spectroscopic Sample, ApJS, 184, 218 https://doi.org/10.1088/0067-0049/184/2/218
  40. Magliocchetti, M., Lutz, D., et al. 2014, The PEP Survey: Infrared Properties of Radio-Selected AGN, MNRAS, 442, 682 https://doi.org/10.1093/mnras/stu863
  41. Mushotzky, R. F., Edelson, R., Baumgartner, W., & Gandhi, P. 2011, Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei, ApJ, 743, L12 https://doi.org/10.1088/2041-8205/743/1/L12
  42. Petrucci, P. P., Chelli, A., Henri, G., Cruz-Gonzalez, I., Salas, L., & Mujica, R. 1999, Search for Optical Microvariability in a Large Sample of Seyfert I Galaxies, A&A, 342, 687
  43. Pica, A. J., & Smith, A. G. 1983, Optical Variability, Absolute Luminosity, and the Hubble Diagram for QSOs, ApJ, 272, 11 https://doi.org/10.1086/161257
  44. Revalski, M., Nowak, D., Wiita, P. J., Wehrle, A. E., & Unwin, S. C. 2014, Investigating the Variability of Active Galactic Nuclei Using Combined Multi-Quarter Kepler Data, ApJ, 785, 60 https://doi.org/10.1088/0004-637X/785/1/60
  45. Romero, G. E., Cellone, S. A., & Combi, J. A. 1999, Optical Microvariability of Southern AGN, A&AS, 135, 477 https://doi.org/10.1051/aas:1999184
  46. Romero, G. E., Cellone, S. A., Combi, J. A., & Andruchow, I. 2002, Optical Microvariability of EGRET blazars, A&A, 390, 431 https://doi.org/10.1051/0004-6361:20020743
  47. Sanders, D. B., et al. 2007, S-COSMOS: The Spitzer Legacy Survey of the Hubble Space Telescope ACS 2 $deg^2$ COSMOS Field I: Survey Strategy and First Analysis, ApJS, 172, 86 https://doi.org/10.1086/517885
  48. Schinnerer, E., et al. 2007, The VLA-COSMOS Survey. II. Source Catalog of the Large Project, ApJS, COSMOS special issue, 172, 46 https://doi.org/10.1086/516587
  49. Schneider, D. P., et al. 2010, The Sloan Digital Sky Survey Quasar Catalog. V. Seventh Data Release, AJ, 139, 2360 https://doi.org/10.1088/0004-6256/139/6/2360
  50. Shaya, E. J., Olling, R., & Mushotzky, R. 2015, Active Galactic Nuclei Discovered in the Kepler Mission, AJ, 150, 188 https://doi.org/10.1088/0004-6256/150/6/188
  51. Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7, ApJS, 194, 45 https://doi.org/10.1088/0067-0049/194/2/45
  52. Simm, T., Saglia, R., Salvato, M., et al. 2015, Pan-STARRS1 Variability of XMM-COSMOS AGN. I. Impact on Photometric Redshifts, A&A, 584, A106 https://doi.org/10.1051/0004-6361/201526859
  53. Simm, T., Salvato, M., Saglia, R., et al. 2016, Pan-STARRS1 Variability of XMM-COSMOS AGN. II. Physical Correlations and Power Spectrum Analysis, A&A, 585, A129 https://doi.org/10.1051/0004-6361/201527353
  54. Smolcic, V., Ciliegi, P., Jeli, V., et al. 2014, The VLA-COSMOS Survey - V. 324 MHz Continuum Observations, MNRAS, 443, 2590 https://doi.org/10.1093/mnras/stu1331
  55. Smolcic, V., Novak, M., Bondi, M., et al. 2017, The VLA-COSMOS 3 GHz Large Project: Continuum Data and Source Catalog Release, A&A, 602, A1 https://doi.org/10.1051/0004-6361/201628704
  56. Stalin, C. S., Gopal-Krishna, Sagar, R., & Wiita, P. J. 2004a, Optical Variability Properties of High Luminosity AGN Classes, JA&A, 25, 1
  57. Stalin, C. S., Gopal-Krishna, Sagar, R., & Wiita, P. J. 2004b, Intranight Optical Variability of Radio-Quiet and Radio Lobe-Dominated Quasars, MNRAS, 350, 175 https://doi.org/10.1111/j.1365-2966.2004.07631.x
  58. Stalin, C. S., Gupta, A. C., Gopal-Krishna, Wiita, P. J., & Sagar, R. 2005, Intranight Optical Variability of BL Lacs, Radio-Quiet Quasars and Radio-Loud Quasars, MNRAS, 356, 607 https://doi.org/10.1111/j.1365-2966.2004.08473.x
  59. Stern, D., et al. 2005, Mid-Infrared Selection of Active Galaxies, ApJ, 631, 163 https://doi.org/10.1086/432523
  60. Ulrich, M.-H., Maraschi, L., & Urry, C. M. 1997, Variability of Active Galactic Nuclei, ARA&A, 35, 445 https://doi.org/10.1146/annurev.astro.35.1.445
  61. Uomoto, A. K., Wills, B. J., & Wills, D. 1976, Image-Tube Photography of a Complete Sample of 4C Radio Sources, AJ, 81, 905 https://doi.org/10.1086/111969
  62. Villforth, C., Koekemoer, A. M., & Grogin, N. A. 2010, A New Extensive Catalog of Optically Variable Active Galactic Nuclei in the GOODS Fields and a New Statistical Approach to Variability Selection, ApJ, 723, 737 https://doi.org/10.1088/0004-637X/723/1/737
  63. Webb, W., & Malkan, M. 2000, Rapid Optical Variability in Active Galactic Nuclei and Quasars, ApJ, 540, 652 https://doi.org/10.1086/309341
  64. Wehrle, A. E., Wiita, P. J., Unwin, S. C., et al. 2013, Kepler Photometry of Four Radio-loud Active Galactic Nuclei in 2010-2012, ApJ, 773, 89 https://doi.org/10.1088/0004-637X/773/2/89