DOI QR코드

DOI QR Code

3D SIMULATIONS OF RADIO GALAXY EVOLUTION IN CLUSTER MEDIA

  • O'NEILL SEAN M. (Department of Astronomy, University of Minnesota) ;
  • SHEARER PAUL (Department of Astronomy, University of Minnesota) ;
  • TREGILLIS IAN L. (Applied Physics Division, MS B259, Los Alamos National Laboratory) ;
  • JONES THOMAS W. (Department of Astronomy, University of Minnesota) ;
  • RYU DONGSU (Department of Astronomy & Space Science, Chungnam National University)
  • Published : 2004.12.01

Abstract

We present a set of high-resolution 3D MHD simulations exploring the evolution of light, supersonic jets in cluster environments. We model sets of high- and low-Mach jets entering both uniform surroundings and King-type atmospheres and propagating distances more than 100 times the initial jet radius. Through complimentary analyses of synthetic observations and energy flow, we explore the detailed interactions between these jets and their environments. We find that jet cocoon morphology is strongly influenced by the structure of the ambient medium. Jets moving into uniform atmospheres have more pronounced backflow than their non-uniform counterparts, and this difference is clearly reflected by morphological differences in the synthetic observations. Additionally, synthetic observations illustrate differences in the appearances of terminal hotspots and the x-ray and radio correlations between the high- and low-Mach runs. Exploration of energy flow in these systems illustrates the general conversion of kinetic to thermal and magnetic energy in all of our simulations. Specifically, we examine conversion of energy type and the spatial transport of energy to the ambient medium. Determination of the evolution of the energy distribution in these objects will enhance our understanding of the role of AGN feedback in cluster environments.

Keywords

References

  1. Blanton, E. L., Sarazin, C. L., & McNamara, B. R. 2003, ApJ, 585, 227 https://doi.org/10.1086/345984
  2. Bohringer H., Matsushita, K., Churazov, E., Ikebe, Y., & Chen, Y. 2002, A&A, 382, 804 https://doi.org/10.1051/0004-6361:20011708
  3. Churazov, E., Sunyaev, R., Forman, W., & Bohringer, H. 2002, MNRAS, 332, 729 https://doi.org/10.1046/j.1365-8711.2002.05332.x
  4. Dai, W., & Woodward P. R. 1998, ApJ, 494, 317 https://doi.org/10.1086/305176
  5. Harten, A. 1983, J: Comput. Phys., 49, 357 https://doi.org/10.1016/0021-9991(83)90136-5
  6. Jones, T. W., Ryu, D., & Engel, A. 1999, ApJ, 512, 105 https://doi.org/10.1086/306772
  7. King, I. 1962, AJ, 67, 8
  8. Ryu, D., & Jones, T. W. 1995, ApJ, 442, 228 https://doi.org/10.1086/175437
  9. Ryu, D., Jones, T. W., & Frank, A. 1995, ApJ, 452, 785 https://doi.org/10.1086/176347
  10. Ryu, D., Miniati, F., Jones, T. W., & Frank, A. 1998, ApJ, 509, 244 https://doi.org/10.1086/306481
  11. Tregillis, I. L., Jones, T. W., & Ryu, D. 2001, ApJ, 557, 475 https://doi.org/10.1086/321657
  12. Tregillis, I. L., Jones, T. W., & Ryu, D. 2002a, in ASP Conf. Ser. 250, Particles and Fields in Radio Galaxies, ed. R. A. Laing & K. M. Blundell (San Francisco: ASP), 336
  13. Tregillis, I. L. 2002b, PhD thesis, Univ. Minnesota
  14. Tregillis, I. L., Jones, T. W., & Ryu, D. 2004, ApJ, 601, 778