• Title/Summary/Keyword: Radiation generator

Search Result 229, Processing Time 0.036 seconds

Effects of Contrast Improvement on High Voltage Rectification Type of X-ray Diagnostic Apparatus (X선 진단장치의 고압정류방식이 대조도 향상에 미치는 영향)

  • Lee, Hoo-Min;Yoon, Joon;Kim, Hyun-Ju
    • Journal of radiological science and technology
    • /
    • v.37 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

A Study on the Correlation between Lung Ventilation Scan using Technegas and Pulmonary Function Test in Patients with COPD (Technegas를 이용한 폐환기 검사와 폐기능 검사의 상관관계에 관한 고찰)

  • Kim, Sang-Gyu;Kim, Jin-Gu;Baek, Song-EE;Kang, Chun-Koo;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • Purpose Lung Ventilation Scan(LVS) images directly inhaled radiation gas to evaluate lung ventilation ability. Therefore, it is influenced by various factors related to inhalation, including number of breaths, respiratory duration, respiration rate, and breathing method. In actual LVS examinations, it is difficult for objectify the patient's ability to inhale, and there is currently no known index related to inhalation. Therefore, this study confirms the correlation between counts per second(cps) in LVS and the results of pulmonary function test(PFT) and evaluate its usefulness as an objective indicator of inhalation. Materials and Methods From October 2010 to September 2018, 36 Chronic Obstructive Pulmonary Disease(COPD) patients who had both LVS and PFT were classified by severity(Mild, Moderate, Severe). LVS was performed by creating Technegas with Vita Medical's Technegas Generator and inhaling it to the patient. LVS images were acquired with Philips's Forte equipment., and PFT used Carefusion's Vmax Encore 22. The correlation between the cps measured by setting the region of interest(ROI) of both lungs on the LVS and the forced vital capacity(FVC), forced expiratory volume in one second($FEV_1$), $FEV_1/FVC$ of the results of PFT was compared and analyzed. Results We analyzed the correlation between cps of LVS using Technegas and the results of PFT by classifying COPD patients according to severity. Correlation coefficient between $FEV_1/FVC$ and cps was Severe -0.773, Moderate -0.750, and Mild -0.437. The Severe and Modulate result values were statistically significant(P<0.05) and Mild was not significant(P=0.155). On the other hand, the correlation coefficient between FVC and cps was statistically significant only in Mild and it was 0.882(P<0.05). Conclusion According to the study, we were able to analyze correlation between cps of LVS using Technegas and the results of PFT in COPD Patients. Using this result, when performing a LVS, the results of PFT can be used as an index of inhaling capacity. In addition, it is thought that it will be more effective for the operation of the exam rooms.

Construction and Performance Evaluation of Digital Radiographic System (이동형 디지털 X선 촬영장치의 구축 및 성능평가)

  • Cho, Hyo-Min;Nam, So-Ra;Lee, Chang-Lae;Jung, Ji-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.144-148
    • /
    • 2007
  • Current digital radiography systems are rapidly glowing in clinical applications. The purpose of this study was to evaluate the characteristics of a mobile digital radiographic system. The performance of the mobile DR system was evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Measurements were made on a LISTEM Mobix-1000 generator and a Teleoptic PRA Alpha-R4000 detector. Imaging characteristics were measured for these two systems using the IEC-61267 defined RQA5 (kVp: 74, additional filtration: 21 mmAl) radiographic condition. The MTF at 10% was measured as 2.4 cycles/mm and the DQE(0) values for radiation exposure 0.19, 0.5, and 1.3 mR were measured as 54%, 55%, and 76%, respectively. The NPS curves gradually decreased at high spatial frequencies. This high DQE at low frequencies, may be useful for low frequency information. The results suggested that mobile DR system could be integrated with emergency ambulance system in teleradiologic imaging applications.

  • PDF

Comparison of Dose and Quality of Copper and Nickel Additional Filter Plate in Diagnostic X-ray Generator (진단용 엑스선 발생장치에서 부가 여과판에 따른 선량과 화질 비교)

  • Lee, Hyun-Kyung;Go, Yu-Rim;Park, Young-Kyeong;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.459-466
    • /
    • 2017
  • The purpose of this study was to evaluate the difference of dose and image quality according to the material of the additional filter plate by selecting copper and nickel. First, the absorbed dose was measured using a Rando phantom setting the additional filter plates of copper and nickel None, 0.1 mm, 0.2 mm, and 0.3 mm under 120 kVp, and 6.3 mAs. Second, We acquired image according to filter thickness of copper and nickel. by changing the tube voltage of 90 kVp, 100 kVp, 110 kVp, 120 kVp and exposure indexes of 400, 800 and 1600. Third, we obtained the SNR and CNR values using the Image J program and evaluated quantitatively and then evaluated image quality. As a result, Absorbed dose measurements showed that nickel was higher than copper, and the absorbed dose decreased as the thickness increased(p<0.05). Furthermore, Quantitative analysis of images showed no significant difference between the two images according to change the voltage and the exposure index(p>0.05). In conclusion, this study confirms that the nickel addition plate can maintain the current image quality while reducing the exposure dose compared to copper.

Damage of radioprotection and antitumor effects of water-soluble propolis

  • Terai, Kaoru;Ryu, Myung-Sun;Itokawa, Yuka;Maenaka, Toshihiro;Nakamura, Takashi;Hasegawa, Takeo;Choi, In-Suk;Ishida, Torao;Gu, Yeun-Hwa
    • Advances in Traditional Medicine
    • /
    • v.6 no.1
    • /
    • pp.12-20
    • /
    • 2006
  • Some natural products are able to inhibit radiation effects and exert an antitumor effect with fewer adverse reactions; however, their antitumor effects are less than those of widely-used synthetic drugs. Propolis is a natural material that has been attracting attention, and we extracted this material with water and investigated the effect of continuous propolis administration on radioactivity-induced reduction of hemocytes, in addition to the antioxidant and antitumor effects of propolis. Following a 1-week adjustment period, water-soluble propolis was administered intraperitoneally to male ICR mice at a dose of 100 mg/kg every other day for 2 weeks. Following administration, 2 Gy whole-body irradiation was performed and the counts of leukocytes, lymphocytes, and granulocytes and monocytes in the peripheral blood were determined 1, 3, 7, 15 and 30 days after irradiation. These cells were considered since they are closely associated with immunity to radioactivity. In a second experiment, water-soluble propolis was similarly administered to the mice for 2 weeks after a 1-week adjustment period, and 2 Gy whole-body irradiation was performed. The antioxidant effects in hemocytes were then investigated using 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), a radical generator. In a third experiment, $1\;{\times}\;10^6$ Sarcoma-180 cells were inoculated into the right thigh of mice, which were divided into four groups: control, water-soluble propolis-treated, 6 Gy irradiated and water-soluble propolis-treated + 6 Gy irradiated groups, and changes in tumor size were measured for 20 days. Statistical analysis was conducted using ANOVA for multiple groups. In the three experiments, administration of water-soluble propolis inhibited the reduction of hemocytes caused by whole-body irradiation, showed antioxidant effects against radioactivity, and inhibited tumor growth, respectively. In conclusion, our data suggest that the antioxidant effect of watersoluble propolis inhibits hemocyte reduction caused by whole-body irradiation and enhances immunological inhibition of tumor growth.

The Tendency of Medical Electrical Equipment - IEC 60601-2-54: Particular Requirements for the Basic Safety and Essential Performance of X-ray Equipment for Radiography and Radioscopy (촬영 및 투시용 X선 장치의 기본안전과 필수 성능에 관한 개별 기준규격의 동향)

  • Roh, Young Hoon;Kim, Jung Min
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.331-336
    • /
    • 2015
  • Medical electrical equipment - Part 1: General requirement for basic safety and essential performance of MFDS was revised as 3th edition and Medical electrical equipment Part 2-54: Particular requirements for the basic safety and essential performance of X-ray equipment will be expected to be announced as notification. Therefore this technical report was written to introduce provision of the particular requirements, replacement, addition, amendment. The purpose of this particular requirements is to secure requirements for basic safety and essential performance of X-ray equipment for radiography and radioscopy. X-ray high voltage generator, mechanical protective device, protection against radiation is included in this particular requirements. Medical electrical equipment - Part 1, Part 1-2, Part 1-3 is applied to this particular requirements. If the requirements is announced as notification, It is expected to widen understanding for basic safety and essential performance of X-ray equipment for radiography and radioscopy and play a part to internationalize of medical equipments.

Fabrication and Its Characteristics of Ion Energy Spectrometer for Diagnostics of Plasma (플라즈마 진단을 위한 이온에너지 분석장치의 제작 및 특성 조사)

  • Kim, Kye-Ryung;Kim, Wan;Lee, Yong-Hyun;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 1998
  • An ion energy spectrometer which has the $45^{\circ}$ parallel electrostatic deflection plate was designed and constructed for measuring ion temperature in high temperature plasma. The energy calibration and the energy resolution were studied in detail for a hydrogen ion at the $0.24{\sim}1.92\;keV$ energy using electrostatic accelerator with a duoplasmatron ion source. The voltage of the deflection plate was linearly increased for the decreased ion detector position at the constant ion energy and decreased for the increased ion energy at the fixed ion detector position. The inclination of the deflection plate voltage to the ion energy was between 0.92 and 1.61, and linearly decreased for the increased the ion detector position. The measured energy resolution, which is $4.2%\;{\sim}\;11.6%$ in this experiment region, was improved for the increased ion dector position and ion energy. The relative efficiency was increased for the decreased the ion detector position. The ion energy spectrum of the DC plasma in the multi-purpose plasma generator was measured using this equipment. The ion temperature was 203-205 eV at the discharge voltage 320 V, discharge current 1.7 A.

  • PDF

A Study on the Fabrication of bone Model X-ray Phantom Using CT Data and 3D Printing Technology (CT 데이터와 3D 프린팅 기술을 이용한 뼈 모형 X선 팬텀 제작에 관한 연구)

  • Yun, Myeong Seong;Han, Dong-Kyoon;Kim, Yeon-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.879-886
    • /
    • 2018
  • A 3-dimensional (D) printer is a device capable of outputting a three-dimensional solid object based on data modeled in a computer. These features are utilized in the bone model X - ray phantom production etc using CT data by fusing with the radiation science field. A bone model phantom was made using data obtained by CT scan of an existing Pelvis phantom, using PLA, Wood, XT-CF20, Glow fill, Steel filaments which are materials of Fused Filament Fabrication (FFF) 3D printer.Measure Hounsfield Unit (HU) with images obtained by CT scan of the existing Pelvis phantom and five material phantoms made with 3D printer under the same conditions,SI and SNR were measured using a diagnostic X-ray generator, and each phantom was compared and analyzed.As a result, the X - ray phantom in the X - ray examination condition of the limb was found to be most suitable for the glow fill filament.The characteristics of the filament can be known to the base of this research and the practicality of X - ray phantom fabrication was confirmed.

Consideration of a Bacteria Contamination Management in the Dispensation of 99mTc Radiopharmaceutical (테크네슘 방사성의약품의 조제와 분배 과정에서 오염균에 대한 고찰)

  • Choi, Do Chul;Gim, Yeong Su;Jo, Gwang Mo;Gim, Hui Jeong;Seo, Han Gyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.84-87
    • /
    • 2018
  • Purpose The radiopharmaceutical used in the nuclear medicine department is used only for the specific patient according to the prescription or instruction of the doctor without selling, so it is dispensed and it is distributed and used for the examination. Radiopharmaceuticals administered to patients should be managed appropriately as well as radiation safety management during dispensation. The purpose of this study is to investigate microbial contamination during dispensation of radiopharmaceuticals Materials and Methods This study distinguished between general workbench and clean workbench and performed three tests. First, microbial cultivation test of radiopharmaceutical prepared and dispensed in general workbenches and sterile workbenches were carried out five times, respectively. The second test was performed settle plate method three times before and after the use of the exhaust filter. Finally, Adenosine Triphosphate (ATP) measurement was performed in each workbench to measure bacterial counts. In addition, ATP measurement were carried out by designating locations and items that may be contaminated during dispensation. Results In the microbial culture test, no microorganisms were detected in both samples. In the settle plate method, it was detected without using of the exhaust filter in a general workbench once. In the ATP measurement test, it was measured at the level of 400 RLU or less, which is the standard value of contamination, in both workbenches surface. In additional ATP measurement test, the refrigerator handle in the distribution room was measured above the reference value of 1217 RLU, the vacuum vial shield of the Tech Generator at 435 RLU, and the syringe holder at 1357 RLU. After environmental disinfection, the results were reduced to 311 RLU, 136 RLU, and 291 RLU. Conclusion No contamination by bacteria was found in both workbenches. However, microbial contamination may occur if the use of an exhaust filter or proper hand hygiene is not achieved. Regular inspections and management for aseptic processing themselves will be necessary.