• Title/Summary/Keyword: Radiation effect

Search Result 3,580, Processing Time 0.032 seconds

Image Quality Improvement through Energy Spectrum Change for X-ray (엑스선 에너지스펙트럼 변경을 통한 영상 화질 향상에 관한 연구)

  • Kim, Gu;Kim, Neung Gyun;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2021
  • When continuous X-ray are used when acquiring and X-ray image, even the same material may not be accurately represented in the image according to the thickness due to various X-ray energies. To solve this problem, the X-ray energy spectrum was changed to improve the image quality. Using SPEKTR v3.0, an X-ray energy spectrum with an additional filter added and a general X-ray energy spectrum using only a unique filter were obtained. Simulation was performed using the obtained X-ray energy spectrum as a radiation source for Geant4 Application for Tomographic Emission (GATE). Using GATE data, an X-ray image with an additional filter and an image reconstructed from and X-ray image without an additional filter were compared and analyzed through a mono energy image of 74 keV. In the case of using the X-ray energy spectrum without using an additional filter, the amount of X-rays transmitted according to the thickness of the same material is different from the amount that decreases according to the thickness of the material. Similar results were obtained as the amount decreased with the material thickness. In other words, a similar result was obtained when the reduced dose was used with a mono energy. When an X-ray image is obtained by changing an X-ray energy spectrum using an additional filter, a more accurate result of transmission of X-rays may be obtained. In radiological examination, it was confirmed that the appropriate use of the additional filter has a great effect on improving the image quality.

Evaluation on Medical Application of Survey meters in Convergence Perspective for the Efficient Disaster Responses in the Massive Radiological Disasters: A Simulation Study of Externally Contaminated Patients Using Two Representative type of Survey-Meters (융합적 관점에서 본 대량방사선 재난에서 효율적 재난반응을 위한 오염감시기의 의학적 적용에 대한 평가: 대표적 두가지 오염감시기를 이용한 방사선외부오염환자 시뮬레이션 연구)

  • Kim, Chu Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.77-83
    • /
    • 2021
  • The purpose of the study is to evaluate the effect on medical application and convergence for the efficient disaster responses in the massive radiological events by comparison of two types of survey-meters(hand held survey-meter and transportable portal monitor). In the simulated radiation disaster drill, twelve participants randomly wore a personal protective equipments (PPE) with twelve check source. We measured participants to detect five real radioactive sources of the twelve check sources, using two types of survey meters. The primary outcome was the measuring time. The secondary outcome was the sensitivity and specificity of the detection of the real radioactive source. The average time by the hand held survey meter was 231.9 ± 116.6 seconds, and the time by transportable portal monitor was statistically shorter 8.690 ± 1.667 seconds. There was no difference in the sensitivity and specificity between two survey meters. The transportable portal monitor survey meter was considered to have medical application and play an important role in radiological disasters.

A Study on the Usefulness of Deep Learning Image Reconstruction with Radiation Dose Variation in MDCT (MDCT에서 선량 변화에 따른 딥러닝 재구성 기법의 유용성 연구)

  • Ga-Hyun, Kim;Ji-Soo, Kim;Chan-Deul, Kim;Joon-Pyo, Lee;Joo-Wan, Hong;Dong-Kyoon, Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • This study aims to evaluate the usefulness of Deep Learning Image Reconstruction (TrueFidelity, TF), the image quality of existing Filtered Back Projection (FBP) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) were compared. Noise, CNR, and SSIM were measured by obtaining images with doses fixed at 17.29 mGy and altered to 10.37 mGy, 12.10 mGy, 13.83 mGy, and 15.56 mGy in reconstruction techniques of FBP, ASIR-V 50%, and TF-H. TF-H has superior image quality compared to FBP and ASIR-V when the reconstruction technique change is given at 17.29 mGy. When dose changes were made, Noise, CNR, and SSIM were significantly different when comparing 10.37 mGy TF-H and FBP (p<0.05), and no significant difference when comparing 10.37 mGy TF-H and ASIR-V 50% (p>0.05). TF-H has a dose-reduction effect of 30%, as the highest dose of 15.56 mGy ASIR-V has the same image quality as the lowest dose of 10.37 mGy TF-H. Thus, Deep Learning Reconstruction techniques (TF) were able to reduce dose compared to Iterative Reconstruction techniques (ASIR-V) and Filtered Back Projection (FBP). Therefore, it is considered to reduce the exposure dose of patients.

Volumetric change of the latissimus dorsi muscle after postoperative chemotherapy and radiotherapy in immediate breast reconstruction with an extended latissimus dorsi musculocutaneous flap: final results from serial studies

  • Song, Kyeong Ho;Oh, Won Seok;Lee, Jae Woo;Kim, Min Wook;Jeong, Dae Kyun;Bae, Seong Hwan;Kim, Hyun Yul;Jung, Youn Joo;Choo, Ki Seok;Nam, Kyung Jin;Joo, Ji Hyeon;Yun, Mi Sook;Nam, Su Bong
    • Archives of Plastic Surgery
    • /
    • v.48 no.6
    • /
    • pp.607-613
    • /
    • 2021
  • Background Breast reconstruction using an extended latissimus dorsi (eLD) flap can supplement more volume than reconstruction using various local flaps after partial mastectomy, and it is a valuable surgical method since the reconstruction area is not limited. However, when performing reconstruction, the surgeon should consider latissimus dorsi (LD) volume reduction due to postoperative chemotherapy (POCTx) and postoperative radiotherapy (PORTx). To evaluate the effect of POCTx and PORTx on LD volume reduction, the effects of each therapy-both separately and jointly-need to be demonstrated. The present study quantified LD volume reduction in patients who underwent POCTx and PORTx after receiving breast-conserving surgery (BCS) with an eLD flap. Methods This study included 48 patients who received immediate breast reconstruction using an eLD flap from January 2013 to March 2017, had chest computed tomography (CT) 7-10 days after surgery and 10-14 months after radiotherapy completion, and were observed for more than 3 years postoperatively. One surgeon performed the breast reconstruction procedures, and measurements of breast volume were obtained from axial CT views, using a picture archiving and communication system. A P-value <0.05 was the threshold for statistical significance. Results The average volume reduction of LD at 10-14 months after completing POCTx and PORTx was 64.5% (range, 42.8%-81.4%) in comparison to the volume measured 7-10 days after surgery. This change was statistically significant (P<0.05). Conclusions Based on the findings of this study, when harvesting an eLD flap, surgeons should anticipate an average LD volume reduction of 64.5% if chemotherapy and radiotherapy are scheduled after BCS with an eLD flap.

Performance Evaluation of YOLOv5s for Brain Hemorrhage Detection Using Computed Tomography Images (전산화단층영상 기반 뇌출혈 검출을 위한 YOLOv5s 성능 평가)

  • Kim, Sungmin;Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.25-34
    • /
    • 2022
  • Brain computed tomography (CT) is useful for brain lesion diagnosis, such as brain hemorrhage, due to non-invasive methodology, 3-dimensional image provision, low radiation dose. However, there has been numerous misdiagnosis owing to a lack of radiologist and heavy workload. Recently, object detection technologies based on artificial intelligence have been developed in order to overcome the limitations of traditional diagnosis. In this study, the applicability of a deep learning-based YOLOv5s model was evaluated for brain hemorrhage detection using brain CT images. Also, the effect of hyperparameters in the trained YOLOv5s model was analyzed. The YOLOv5s model consisted of backbone, neck and output modules. The trained model was able to detect a region of brain hemorrhage and provide the information of the region. The YOLOv5s model was trained with various activation functions, optimizer functions, loss functions and epochs, and the performance of the trained model was evaluated in terms of brain hemorrhage detection accuracy and training time. The results showed that the trained YOLOv5s model is able to provide a bounding box for a region of brain hemorrhage and the accuracy of the corresponding box. The performance of the YOLOv5s model was improved by using the mish activation function, the stochastic gradient descent (SGD) optimizer function and the completed intersection over union (CIoU) loss function. Also, the accuracy and training time of the YOLOv5s model increased with the number of epochs. Therefore, the YOLOv5s model is suitable for brain hemorrhage detection using brain CT images, and the performance of the model can be maximized by using appropriate hyperparameters.

Pyrolysis Effect of Nitrous Oxide Depending on Reaction Temperature and Residence Time (반응온도 및 체류시간에 따른 아산화질소 열분해 효과)

  • Park, Juwon;Lee, Taehwa;Park, Dae Geun;Kim, Seung Gon;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1074-1081
    • /
    • 2021
  • Nitrous oxide (N2O) is one of the six major greenhouse gases and is known to produce a greenhouse ef ect by absorbing infrared radiation in the atmosphere. In particular, its global warming potential (GWP) is 310 times higher than that of CO2, making N2O a global concern. Accordingly, strong environmental regulations are being proposed. N2O reduction technology can be classified into concentration recovery, catalytic decomposition, and pyrolysis according to physical methods. This study intends to provide information on temperature conditions and reaction time required to reduce nitrogen oxides with cost. The high-temperature ranges selected for pyrolysis conditions were calculated at intervals of 100 K from 1073 K to 1373 K. Under temperatures of 1073 K and 1173 K, the N2O reduction rate and nitrogen monoxide concentration were observed to be proportional to the residence time, and for 1273 K, the N2O reduction rate decreased due to generation of the reverse reaction as the residence time increased. Particularly for 1373 K, the positive and reverse reactions for all residence times reached chemical equilibrium, resulting in a rather reduced reaction progression to N2O reduction.

Impact of Microbiota on Gastrointestinal Cancer and Anticancer Therapy (미생물 균총이 위장관암과 항암제에 미치는 영향)

  • Kim, Sa-Rang;Lee, Jung Min
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.391-410
    • /
    • 2022
  • Human microbiota is a community of microorganisms, including bacteria, fungi, and viruses, that inhabit various locations of the body, such as the gut, oral, and skin. Along with the development of metabolomic analysis and next-generation sequencing techniques for 16S ribosomal RNA, it has become possible to analyze the population for subtypes of microbiota, and with these techniques, it has been demonstrated that bacterial microbiota are involved in the metabolic and immunological processes of the hosts. While specific bacteria of microbiota, called commensal bacteria, positively affect hosts by producing essential nutrients and protecting hosts against other pathogenic microorganisms, dysbiosis, an abnormal microbiota composition, disrupts homeostasis and thereby has a detrimental effect on the development and progression of various types of diseases. Recently, several studies have reported that oral and gut bacteria of microbiota are involved in the carcinogenesis of gastrointestinal tumors and the therapeutic effects of anticancer therapy, such as radiation, chemotherapy, targeted therapy, and immunotherapy. Studying the complex relationships (bacterial microbiota-cancer-immunity) and microbiota-related carcinogenic mechanisms can provide important clues for understanding cancer and developing new cancer treatments. This review provides a summary of current studies focused on how bacterial microbiota affect gastrointestinal cancer and anticancer therapy and discusses compelling possibilities for using microbiota as a combinatorial therapy to improve the therapeutic effects of existing anticancer treatments.

Suppression of Powdery Mildew and Two-Spotted Spider Mite by UV-B Radiation and Mulching Type of Strawberry Cultivation in the Greenhouse (딸기 시설재배에서 UV-B 램프와 멀칭 종류에 따른 흰가루병과 점박이응애 억제)

  • Nam, Myeong Hyeon;Kim, Hyun Sook;Lee, InHa;Seo, Jeong Hak;Lee, Byung Joo
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • Powdery mildew and two-spotted spider mite are detrimental to strawberry plants and are controlled with traditional pesticides. To accommodate consumer demand, eco-friendly methods of pest control are required. Strawberries were cultivated (in soil and in a hydroponic system) for two years, and ultraviolet B (UV-B) irradiation was used as an alternative pest control during the harvesting season. Three varieties were grown (Seolhyang, Kingsberry, and Durihyang), and four UV-B lamp/mulch (black, green, and light reflection sheet [LRS]) combinations were used during harvesting: UV-B+black or green mulch, UV-B+black or green+LRS, no UV-B+black or green, and no UV-B+black or green+LRS. In all varieties, powdery mildew was 65% more controlled when UV-B irradiation was used. The adult two-spotted spider mite density was lowest in the UV-B lamp+black or green+LRS treatments. Therefore, UV-B irradiation during the strawberry harvesting season could effectively control powdery mildew and two-spotted spider mite with little side effect on the plants.

Possibility of Cancer Treatment by Cellular Differentiation into Adipocytes (지방세포로의 분화를 통한 악성 종양의 치료 가능성)

  • Byeong-Gyun Jeon;Sung-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.512-522
    • /
    • 2023
  • Cancer with unlimited cell growth is a leading cause of death globally. Various cancer treatments, including surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapy, can be applied alone or in combination depending on the cancer type and stage. New treatments with fewer side effects than previous cancer treatments are continually under development and in demand. Undifferentiated stem cells with unlimited cell growth are gradually changed via cellular differentiation to arrest cell growth. In this study, we reviewed the possibility of treating cancer by using cellular differentiation into the adipocytes in cancer cells. In previous in vitro studies, oral antidiabetic drugs of the thiazolidinedione (TDZ) class, such as rosiglitazone and pioglitazone, were induced into the adipocytes in various cancer cell lines via increased peroxisome proliferator-activated receptor-γ (PPAR γ) expression and glucose uptake, which is the key regulator of adipogenesis and the energy metabolism pathway. The differentiated adipogenic cancer cells treated with TDZ inhibited cell growth and had a less cellulotoxic effect. This adipogenic differentiation treatment suggests a possible chemotherapy option in cancer cells with high and abnormal glucose metabolism levels. However, the effects of the in vivo adipogenic differentiation treatment need to be thoroughly investigated in different types of stem and normal cells with other side effects.

Analysis of the Spatial Distribution of Pan Evaporation Trends (Pan 증발량 추세분포 분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.243-255
    • /
    • 2010
  • The spatial distribution of pan evaporation and pan evaporation trends have been studied. In this study, pan evaporation data from 1973 to 1990 for 56 climatological stations were analyzed. In addition to annual average daily pan evaporation, monthly average daily pan evaporation in April, July, October and January were analyzed, considering seasonal effect. The study results indicate that in case of annual average daily pan evaporation, 38 stations out of 56 stations show decreasing trend. In case of average daily pan evaporation in January, 33 stations show decreasing trend. In April, 38 stations show increasing trend. In July, 47 stations show decreasing trend. In October, 35 stations show increasing trend. Therefore, on the whole, pan evaporation tended to decrease in January, July, and annual basis. On the other hand, pan evaporation tended to increase in April and October. Furthermore, pan evaporation trend in each individual region shows also different trend even though the region is located nearby, indicating that there are geographical and topographical effects on pan evaporation trend. Pan evaporation data and climatic data from 1973 to 2006 for 11 climatological stations were used for trend analysis. Climatic variables such as temperature, relative humidity and wind speed show same or opposite trend direction compared with pan evaporation in annual or monthly basis. Annual and monthly solar radiation trends show the same direction compared with pan evaporation; however, annual and monthly precipitation trends show the opposite direction compared with pan evaporation.