Browse > Article
http://dx.doi.org/10.15207/JKCS.2021.12.3.077

Evaluation on Medical Application of Survey meters in Convergence Perspective for the Efficient Disaster Responses in the Massive Radiological Disasters: A Simulation Study of Externally Contaminated Patients Using Two Representative type of Survey-Meters  

Kim, Chu Hyun (Department of Emergency Medicine, Inje University College of Medicine and Seoul Paik Hospital)
Publication Information
Journal of the Korea Convergence Society / v.12, no.3, 2021 , pp. 77-83 More about this Journal
Abstract
The purpose of the study is to evaluate the effect on medical application and convergence for the efficient disaster responses in the massive radiological events by comparison of two types of survey-meters(hand held survey-meter and transportable portal monitor). In the simulated radiation disaster drill, twelve participants randomly wore a personal protective equipments (PPE) with twelve check source. We measured participants to detect five real radioactive sources of the twelve check sources, using two types of survey meters. The primary outcome was the measuring time. The secondary outcome was the sensitivity and specificity of the detection of the real radioactive source. The average time by the hand held survey meter was 231.9 ± 116.6 seconds, and the time by transportable portal monitor was statistically shorter 8.690 ± 1.667 seconds. There was no difference in the sensitivity and specificity between two survey meters. The transportable portal monitor survey meter was considered to have medical application and play an important role in radiological disasters.
Keywords
Medical application; Convergence; Radiological disaster; Survey meter; Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Coeytaux, E. Bey, D. Christensen, E. S. Glassman, B. Murdock &, C. Doucet. (2015). Reported radiation overexposure accidents worldwide, 1980-2013: a systematic review. PLoS One. 19;10(3), e0118709. DOI: 10.1371/journal.pone.0118709   DOI
2 V. Meineke & H. Dorr. (2012). The Fukushima radiation accident: consequences for radiation accident medical management. Health Phys, 103(2), 217-20. DOI: 10.1097/HP.0b013e31825b5809   DOI
3 Y. W. Jin, M. Jeong, K. Moon, M. H. Jo & S. K. Kang. (2010). Ionizing radiation-induced diseases in Korea. J Korean Med Sci. 25(Suppl), S70-6. DOI: 10.3346/jkms.2010.25.S.S70   DOI
4 A. Jaworska. (2009). Types of radiation mass casualties and their management. Ann Ist Super Sanita. 45(3), 246-50.
5 H. D. Dorr & V. Meineke. (2006). Appropriate radiation accident medical management: necessity of extensive preparatory planning. Radiat Environ Biophys. 45(4), 237-44. DOI: 10.1007/s00411-006-0068-x   DOI
6 M. Selikson, M. Felice, R. Forrest, L. Lodhi, J. McCue & J. Reilley. (1996). A portable survey meter method for locating and quantifying removable contamination after 131I therapies. Health Phys.70(2), 245-9. DOI: 10.1097/00004032-199602000-00013   DOI
7 P. E. Fehlau & G. S. Brunson. (1983). Coping with Plastic Scintillators in Nuclear Safeguards. IEEE Transactions on Nuclear Science. 30(1), 158-161. DOI: 10.1109   DOI
8 M. Bahadori, S. M. Rezayat Sorkhabadi, S. Fazli Tabaei & D. D. Farhud. (2020). Convergence Science to Transform Biomedicine: A Narrative Review. Iran J Public Health. 49(2), 221-229. PMID: 32461929
9 K. Markiewicz, J. A van Til & M. J. IJzerman. (2014). Medical devices early assessment methods: systematic literature review. Int J Technol Assess Health Care. 30(2), 137-46. DOI: 10.1017/S0266462314000026.   DOI
10 O. Ahn, J. E. HEE & S. Kim. (2017). Development of the Disaster Nursing Preparedness·Response Competency (DNPRC) Scale in terms of Convergence. Journal of the Korea Convergence Society. 8(7), 101-111. DOI: 10.15207/JKCS.2017.8.7.101   DOI
11 K. Choi & J. K. Cho. (2018). Statistical analysis of national examination for radiological technologists in convergence perspective. Journal of the Korea Convergence Society. 9(5), 85-90. Doi.org/10.15207/JKCS.2018.9.5.085   DOI
12 D. Cole & N. Martin-Burtart. (2018). Calibration of radiation portal monitors for characterization of historic low-level radioactive waste. Health Phys. 2115(3), 409-413. DOI: 10.1097/HP.0000000000000892   DOI
13 T. G. Adams & R. Casagrande. (2018). Screening internal contamination of inhaled and ingested radionuclides with hand-held survey meters. Health Phys, 114(3), 299-306. DOI: 10.1097/HP.0000000000000756   DOI
14 M. J. Youngman. (2015). Review of methods to measure internal contamination in an emergency. J Radiol Prot. 35(2), R1-15. DOI: 10.1088/0952-4746/35/2/R1   DOI
15 S. L. Sugarman, W. M. Findley, R. E. Toohey & N. Dainiak. (2018). Rapid response, dose assessment, and clinical management of a plutonium-contaminated puncture wound. Health Phys. 115(1), 57-64. DOI: 10.1097/HP.000000000000082.   DOI
16 M. C. Erdman, K. L. Miller & B. E. Achey. (2001). Experience with a medical waste portal monitoring system. Health Phys. 80(2 Suppl), S13-5.
17 F. D. Amaro, C. M. Monteiro, J. M. Dos Santos & A. Antognini. (2017). Novel concept for neutron detection: proportional counter filled with 10B nanoparticle aerosol. Sci Rep. 9(7), 41699. DOI: 10.1038/srep41699   DOI
18 K. Rothkamm et al. (2013). Manual versus automated gamma-H2AX foci analysis across five European laboratories: can this assay be used for rapid biodosimetry in a large scale radiation accident? Mutat Res. 30;756(1-2), 170-3. doi: 10.1016/j.mrgentox.2013.04.012 Epub 2013 May 3.   DOI
19 K. B. Kim, K. Keum & C. Jang. (2017). Research on the Convergence of CCTV Video Information with Disaster Recognition and Real-time Crisis Response System. Journal of the Korea Convergence Society. 8(3), 15-22. DOI: 10.15207/JKCS.2017.8.3.015   DOI
20 Murakami M et al. (2018). Effect of radiological countermeasures on subjective well-being and radiation anxiety after the 2011 disaster: the fukushima health management survey. Int J Environ Res Public Health. 12;15(1), 124 DOI: 10.3390/ijerph15010124   DOI
21 M. E. Rea, R. M. Gougelet, R. J. Nicolalde, J. A. Geiling & H. M. Swartz. (2010). Proposed triage categories for large-scale radiation incidents using high-accuracy biodosimetry methods. Health Phys. 98(2), 136-44. DOI: 10.1097/HP.0b013e3181b2840b   DOI
22 J. T. Bushberg et al. (2007). Nuclear/radiological terrorism: emergency department management of radiation casualties. J Emerg Med. 32(1), 71-85. DOI: 10.1016/j.jemermed.2006.05.034   DOI
23 Korea Institute of Nuclear Safety. (2014). Radiation accident 2014.
24 S. A. Bland. (2004). Mass casualty management for radiological and nuclear incidents. J R Army Med Corps. 150(3 Suppl 1), 27-34.   DOI
25 S. M. Becker & S. A. Middleton. (2008). Improving hospital preparedness for radiological terrorism: perspectives from emergency department physicians and nurses. Disaster Med Public Health Prep, 2(3), 174-84. DOI: 10.1097/DMP.0b013e31817dcd9a   DOI
26 J. Valentin & International Commission on Radiological Protection. (2005). Protecting people against radiation exposure in the event of a radiological attack. A report of The International Commission on Radiological Protection. Ann ICRP. 35(1), 1-110, iii-iv. DOI: 10.1016/j.icrp.2005.01.001   DOI