• Title/Summary/Keyword: Radiation dosage

Search Result 160, Processing Time 0.031 seconds

A Study on the Reduction of Scattered Ray in Outside Radiation Field (조사야 외부의 산란선량 감소 방법에 관한 연구)

  • Je, Jaeyong;Jang, Howon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.539-543
    • /
    • 2016
  • In this research, The way to decrease a patient's exposure dose by reducing the scattered radiation dosage outside a radiation field with an diagnosis X-ray was examined. The scattered radiation dosage reaching other parts outside the radiation field was to be reduced by attaching a self-produced $150{\times}190mm^2$ lead plate to the lower part of a collimator. When a lead plate was inserted additionally and the scattered radiation dosage of the X axis was measured in the direction of the central X-ray axis, It was found out to have been decreased by 26 to 36%, and in the direction of Y axis, which was vertical direction from the central axis, The scattered radiation dosage depending on whether a lead plate was used or not displayed no large differences. These results shows that the impact of the scattered radiation by the off focus X-ray that was generated around the focus was bigger than that generated by the shutter of the collimator. Therefore it has been concluded that installing an additional lead plate in the lower part of the existing collimator can decrease the scattered radiation dosage outside a radiation field.

Radiation Monitoring on a Fuel Handling Machine with Semiconductor Sensors (반도체센서를 이용한 핵연료교환기 피폭방사선량 모니터링)

  • 김승호;김양모;이남호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.249-254
    • /
    • 2004
  • The radiation dosage of nuclear fuel handling machine of PHWR type NPP during normal operation is measured using semiconductor detectors. In order to predict and mitigate the damage of main components in fuel handling machine, caused by high irradiation, the radiation dosage exerted to the components by neutron and gamma ray is measured independently during one time of the fuel exchange, which is used far estimating the radiation dosage for one year. This result can guarantee the safety and economical efficiency for determining the replacement time of the high cost main components in fuel handling machine.

Effects of Low Dose Gamma Radiation on the Formation of Shikonin Derivatives on Callus Cultures of Lithospermum erythrorhizon (지치(Lithospermum erythrorhizon S.)의 캘러스배양에서 Shikonin 유도체 생산에 미치는 저선량γ선의 효과)

  • Hwang, Hye-Yeon;Kim, Jae-Sung;Lee, Young-Bok
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.293-299
    • /
    • 2003
  • The effects of low dosage ${\gamma}$-radiation on the cell growth and the formation of shikonin derivatives were investigated in callus cultures of Lithospermum erythrorhizon under different medium and light conditions. Gamma radiation significantly affected the cell growed and formation of shikonin derivatives, depending on the culture conditions. In the cell cultures grown on M-9 medium, 2Gy and 16Gy of ${\gamma}$-radiation increased the calli growth and the formation of shikonin derivatives, respectively under 16hr day light condition. When calli were cultured for 60 days in the dark after irradiation of ${\gamma}$-radiation, cell growth was increased at low dosage of 1Gy and 2Gy in LS medium containing BA 2mg/L and IAA 0.2mg/L. Interestingly, calli grown in M-9 medium by 2Gy irradiation for 60 days significantly stimulated the formation of shikonin derivatives(13.21mg/g cell fresh wt), which was approximately 6 times higher than untreated cells.

Evaluation of the Radiation Dosage Flowing out of the Hot Cell During Synthesis of 18FDG (18FDG 합성시 핫셀장비 외부로 유출 방사선의 선량 평가)

  • Jung, Hongmoon;Cho, June ho;Jung, Jaeeun;Won, Doyeon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.5
    • /
    • pp.365-369
    • /
    • 2013
  • Intravenous injection is administered with radioactive medical isotopes to detect disease on Positron Emission Tomography (PET). In this case, typically, $^{18}FDG$ (Fluorodeoxyglucose) is used as a radioactive medicine. Cassette equipment is needed to synthesize deoxyglucose with $^{18}F$, produced by medical cyclotron. Production of radioactive medicine creates a lot of radiation, thus Hot Cell is used to shield a secondary radiation. We measured the radiation dosage flowing out of the hot cell during synthesis of $^{18}FDG$ or distribution. The purpose of this study is to provide the information of radiation dosage regarding the occupational exposure that unintentionally occurs during the synthesis of $^{18}FDG$. In conclusion, we confirmed the radiation dosage out of the hot cell during the $^{18}FDG$ synthesis. Especially, we observed that the radiation flowed out through the lead window, attached as a view port. Thus, it is considered that the improvement of a lead window is necessary in order to decrease the occupational exposure during the $^{18}FDG$ synthesis.

Development of an Improved RF Dosimeter (개량된 비접촉형 RF 선량계 구현)

  • Son, Jong-Dea;Lee, Seung-Min;Lee, Heung-Ho;Lee, Nam-Ho;Lee, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.540-543
    • /
    • 2003
  • This paper presents design and manufacture of RF type non-contact radiological dosage measuring device. It also concerns on the broad out-line and the ways of improvement about RF type non-contact radiation measuring device. Measuring radiological dosage with non-contact RF, the stability and efficiency of the measure have been improved by reforming constant current circuit. Furthermore, applying communication protocol in process makes it possible to achieve faster and more accurate communication than old circuit. On the base of those, RF type non-contact radiological dosage measuring device which consists of radiological dosage measuring module and Reader module has been designed and manufactured. While testing communication against embodied device, the possibility of the field application could be confirmed.

  • PDF

Indirect assessment of internal irradiation from tritium decay on Lemna Minor duckweed

  • Ifayefunmi, O.S.;Mirseabasov, O.A.;Synzynys, B.I.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1991-1999
    • /
    • 2021
  • The response changes of the specific growth rate of Lemna minor duckweed was modeled using the logarithms of frond numbers on tritium activity concentration and gamma radiation dose from cobalt 60. The concept of average specific growth rate depends on the general exponential growth pattern, where toxicity is estimated based on the effect on the growth rate. One of the main questions of the effect of the radiation dose on duckweed is how to correlate the effect of beta radiation with the effect of any other radiation for modeling radiation on Lemna minor. Experimental data were extrapolated by utilizing the OECD guidelines. A linear relationship of absorbed dose and activity concentration was obtained for the average dependency growth rate of Lemna minor as D = (0.1257)·A0.585. The dose rate of gamma irradiation from 60Co increases with tritium activity dependence, on the specific growth rate of the Lemna minor duckweed. An increase in the tritium activity causes a decrease in the specific growth rate of the Lemna minor duckweed. It indicates that as the quantity of the beta radiation dose increase in Lemna minor duckweed, a higher quantity of gamma radiation will be required to cause the same effect in the specific growth rate of Lemna minor duckweed. The relation between the inhibition of the Lemna minor seedling growth and gamma and beta radiation dosage agrees roughly with that between the decrease of survival rate or fertility and dosage.

Gamma Knife Radiosurgery for Juxtasellar Tumors (터어키안 주변종양에 대한 감마나이프 방사선 수술)

  • Chang, Jong Hee;Chang, Jin Woo;Park, Yong Gou;Chung, Sang Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.10
    • /
    • pp.1345-1351
    • /
    • 2000
  • Objective : Around the sellar area, there are many important structures. But, the optimal radiation dosage for minimal toxicity to surrounding neural tissue has not been firmly established. The purpose of this study is to evaluate the radiosurgical outcome of juxtasellar tumors and to investigate the relationship between radiation dosage and toxicity to neural tissue. Method : Between May 1992 and June 2000, we treated 65 juxtasellar tumors by using the Leksell Gamma Knife. Among them, 52 patients who could be followed more than 1 year were included in this study. The radiosurgical dosage to the optic pathway, cavernous sinus, Meckel's cave, hypothalamus, pituitary gland and stalk, and brain stem was analyzed and correlated with clinical outcome. The mean follow-up period was 33.5 months(range 12.2- 99.0 months). Result : The clinical response rate was 69.2%. The volume response rate was 61.0% and the radiologic control rate was 92.7%. There were 4 complications(7.7%) of 2 trigeminal neuropathy, 1 abducens nerve palsy, and 1 trigeminal and transient abducens nerve palsy. The optic apparatus appeared to tolerate doses greater than 10Gy. The risk of cranial nerve complications in cavernous sinus seemed to be related to doses of more than 16Gy. In 3 of 4 patients who received more than 16Gy to cavernous sinus, the abducens or trigeminal neuropathy occurred. Also, one patient who received more than 15Gy to the Meckel's cave, trigeminal neuropathy developed. The hypothalamus, pituitary gland and stalk, and brain stem were relatively tolerable to radiation. Conclusion : Gamma Knife radiosurgery seems to be an effective method to control the growth of juxtasellar tumors. To avoid injury to surrounding important neural tissue, careful dose planning and further study for radiation toxicity to neural tissue were needed.

  • PDF

Sensitivity of Lavender to Proton, Electron, and Gamma Radiation

  • Chen, Wensheng;Li, Hui;Shi, Lei;Bai, Hong Tong
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.122-133
    • /
    • 2016
  • While ion beams are widely used in plant breeding, little is known about the sensitivity of Lavandula angustifolia (lavender) to ionizing radiation. To compare the biological effects of different types of ionizing radiation on the germination and survival rates of lavender, we exposed lavender seeds to gamma rays, 3 MeV electron beams, and 1.89 MeV proton ion beams. We observed that the seed germination rate decreased with increasing dosages of all three types of ionizing radiation. The malformation rate of lavender seedlings exposed to electron beams and gamma rays increased with increasing radiation dosage. By contrast, the effect of the accelerated proton beams on the malformation rate was negatively correlated with the dosage used. The survival rate of lavender seedlings exposed to the three types of ionizing radiation decreased in a dose-dependent manner. In addition, the survival rate of seedlings irradiated with proton and electron beams decreased more slowly than did that of seedlings irradiated with gamma rays. The half-lethal dose of gamma rays, electron beams, and proton beams was determined to be 48.1 Gy, 134.3 Gy, and 277.8 Gy, respectively, and the most suitable proton-ion energy for lavender seeds in terms of penetration depth was determined to be 5 MeV. These findings provide valuable information for the breeding of lavender by radiation mutation.

A Study on the Isodose Distribution in a Vascular Characterization Room

  • Choi, Young;Kang, Byung-Sam;Min, Jung-Whan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • As applications of radiation grow wider from use in the early detection of lesions and preventive diagnosis purposes to the treatment of diseases, the possibilities for patients and working professionals to be exposed to radiation are becoming greater than ever. This can not only directly bring about an increase in patient's individual radiation exposure, but also brings about an increase in the annual radiation dose of working professionals. Therefore, research and countermeasures to reduce radiation dosage are required. In this study, space dosimetry has been divided into two separate measuments with an understanding of the increasing number of angiography procedures: front perspective and side perspective. According to the results of the isodose curve, a way to minimize radiation exposure in working professionals has been suggested. This was made possible by workers through awareness of suitable working positions.

  • PDF

Design Method for Flowing Water Purification with UV Lamp (UV램프를 이용한 유수처리형 살균장치의 설계방법)

  • Jung, Byung-Kyun;Lee, Jin-Jong;Jeong, Byeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.455-460
    • /
    • 2009
  • A number of factors combine to make ultraviolet radiation a superior means of water purification for ground water, rainwater harvesting systems and so on. Ultraviolet radiation is capable of destroying all types of bacteria. Additionally, ultraviolet radiation disinfects rapidly without the use of heat or chemical additives which may undesirably alter the composition of water. In a typical operation, water enters the inlet of a UV lamp and flows through the annular space between the quartz sleeve and the outside chamber wall. The irradiated water leaves through the outlet nozzle. Several design features are combined to determine the dosage delivered. The first is Wavelength output of the lamp, the Second is Length of the lamp - when the lamp is mounted parallel to the direction of water flow, the exposure time is proportional to the length of the lamp, the third is Design water flow rate - exposure time is inversely related to the linear flow rate, the forth is Diameter of the purification chamber - since the water itself absorbs UV energy, the delivered dosage diminishes logarithmically with the distance from the lamp. In this paper, It describe the how to design optimal UV disinfection device for ground water and rainwater. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method manufactured prototype applied to disinfection test and proved satisfied performance.