• 제목/요약/키워드: Radiation Prediction

검색결과 524건 처리시간 0.012초

제주 실시간 일사량의 기계학습 예측 기법 연구 (A Study on Prediction Techniques through Machine Learning of Real-time Solar Radiation in Jeju)

  • 이영미;배주현;박정근
    • 한국환경과학회지
    • /
    • 제26권4호
    • /
    • pp.521-527
    • /
    • 2017
  • Solar radiation forecasts are important for predicting the amount of ice on road and the potential solar energy. In an attempt to improve solar radiation predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, support vector machines and logistic regression. To validate machine learning models, the results from the simulation was compared with the solar radiation data observed over Jeju observation site. According to the model assesment, it can be seen that the solar radiation prediction using random forest is the most effective method. The error rate proposed by random forest data mining is 17%.

지도학습에서 다양한 입력 모델에 의한 초단기 태양광 발전 예측 (Forecasting of Short Term Photovoltaic Generation by Various Input Model in Supervised Learning)

  • 장진혁;신동하;김창복
    • 한국항행학회논문지
    • /
    • 제22권5호
    • /
    • pp.478-484
    • /
    • 2018
  • 본 연구는 기온, 강수량, 풍향, 풍속, 습도, 운량, 일조, 일사 등 시간별 기상 데이터를 이용하여, 일사 및 일조 그리고 태양광 발전예측을 하였다. 지도학습에서 입출력패턴은 예측에서 가장 중요한 요소이지만 인간이 직접 결정해야하기 때문에, 반복적인 실험에 의해 결정해야 한다. 본 연구는 일사 및 일조 예측을 위하여 4가지 모델의 입출력 패턴을 제안하였다. 또한, 예측된 일조 및 일사 데이터와 전라남도 영암 태양광 발전소의 발전량 데이터를 사용하여 태양광 발전량을 예측하였다. 실험결과 일조 및 일사 예측에서 모델 4가 가장 예측결과가 우수했으며, 모델 1에 비해 일조의 RMSE는 1.5배 정도 그리고 일사의 RMSE는 3배 정도 오차가 줄었다. 태양광 발전예측 실험결과 일조 및 일사와 마찬가지로 모델 4가 가장 예측결과가 좋았으며, 모델 1 보다 RMSE가 2.7배 정도 오차가 줄었다.

SEA 법에 의한 결합구조물의 음향방사파워 예측 (Prediction of Sound Radiation Power from Coupled Structures using SEA)

  • 오재응
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1987년도 학술발표회 논문집
    • /
    • pp.24-30
    • /
    • 1987
  • SEA method have been developed for prediction sound radiation power from vibration of machinery. In this study, sound radiation power was predicted from coupled structures by transmission of vibration, which composed of two plates welded at right angle. The predicted sound radiation power is agreement within 2 or 3 dB on octave band comparing with values obtained from direct measurements. Also, in order to prove the validity of this method in changes of sound radiation power associated with modifications to structures, rubber pad stuck on a plate. This result is agreement approximately within 3 or 5 dB.

  • PDF

Heliocentric Potential (HCP) Prediction Model for Nowscast of Aviation Radiation Dose

  • Hwang, Junga;Kim, Kyung-Chan;Dokgo, Kyunghwan;Choi, Enjin;Kim, Hang-Pyo
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권1호
    • /
    • pp.39-44
    • /
    • 2015
  • It is well known that the space radiation dose over the polar route should be carefully considered especially when the space weather shows sudden disturbances such as CME and flares. The National Meteorological Satellite Center (NMSC) and Korea Astronomy and Space Science Institute (KASI) recently established a basis for a space radiation service for the public by developing a space radiation prediction model and heliocentric potential (HCP) prediction model. The HCP value is used as a critical input value of the CARI-6 and CARI-6M programs, which estimate the aviation route dose. The CARI-6/6M is the most widely used and confidential program that is officially provided by the U.S. Federal Aviation Administration (FAA). The HCP value is given one month late in the FAA official webpage, making it difficult to obtain real-time information on the aviation route dose. In order to overcome this limitation regarding time delay, we developed a HCP prediction model based on the sunspot number variation. In this paper, we focus on the purpose and process of our HCP prediction model development. Finally, we find the highest correlation coefficient of 0.9 between the monthly sunspot number and the HCP value with an eight month time shift.

Prediction of the Exposure to 1763MHz Radiofrequency Radiation Based on Gene Expression Patterns

  • Lee, Min-Su;Huang, Tai-Qin;Seo, Jeong-Sun;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • 제5권3호
    • /
    • pp.102-106
    • /
    • 2007
  • Radiofrequency (RF) radiation at the frequency of mobile phones has been not reported to induce cellular responses in in vitro and in vivo models. We exposed HEI-OC1, conditionally-immortalized mouse auditory cells, to RF radiation to characterize cellular responses to 1763 MHz RF radiation. While we could not detect any differences upon RF exposure, whole-genome expression profiling might provide the most sensitive method to find the molecular responses to RF radiation. HEI-OC1 cells were exposed to 1763 MHz RF radiation at an average specific absorption rate (SAR) of 20 W/kg for 24 hr and harvested after 5 hr of recovery (R5), alongside sham-exposed samples (S5). From the whole-genome profiles of mouse neurons, we selected 9 differentially-expressed genes between the S5 and R5 groups using information gain-based recursive feature elimination procedure. Based on support vector machine (SVM), we designed a prediction model using the 9 genes to discriminate the two groups. Our prediction model could predict the target class without any error. From these results, we developed a prediction model using biomarkers to determine the RF radiation exposure in mouse auditory cells with perfect accuracy, which may need validation in in vivo RF-exposure models.

항공기 탑재 우주방사선 측정장비와 예측프로그램의 비교값 실증연구 (Empirical Study on the Value Comparison Between Cosmic Radiation Measuring Instruments and Prediction Programs)

  • 김규왕;최연철
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.755-762
    • /
    • 2023
  • 우주방사선을 측정을 위해서는 측정장비의 신뢰성이 중요하다. 본연구는 이에 대한 실증으로 현재 우리나라에서 운영되고 있는 우주방사선 실측장비인 Liulin와 TEPC을 항공기에 탑재하여 인천과 로스엔젤레스 구간에서 측정하여 비교하였다. 또한 우주방사선량을 확인하기 위해서는 사전에 예측프로그램을 통한 분석이 필요하므로 FAA가 개발한 CARI-6M과 우리나라의 KREAM 프로그램을 사용하여 예측치를 도출하였다. 검증결과 2개의 장비는 허용수준인 20% 이내로 장비 신뢰도에 문제가 없었다. 또한, 예측프로그램도 각각의 차이가 매우 미세한 것으로 나타났다. 그러나 예측프로그램의 예측값과 실측치와는 큰 차이를 보이는 것으로 분석되었다. 따라서 이에 대한 보정이나 지속적인 연구를 통하여 예측치가 실측치와 유사하도록 프로그램을 보완하는 것이 요구된다.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

Hybrid radiation technique of frequency-domain Rankine source method for prediction of ship motion at forward speed

  • Oh, Seunghoon;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.260-277
    • /
    • 2021
  • The appropriate radiation conditions of ship motion problem with advancing speed in frequency domain are investigated from a theoretical and practical point of view. From extensive numerical experiments that have been conducted for evaluation of the relevant radiation conditions, a hybrid radiation technique is proposed in which the Sommerfeld radiation condition and the free surface damping are mixed. Based on the comparison with the results of the translating and pulsating Green function method, the optimal damping factor of the hybrid radiation technique is selected, and the observed limitations of the proposed hybrid radiation technique are discussed, along with its accuracy obtained from the numerical solutions. Comparative studies of the forward-speed seakeeping prediction methods available confirm that the results of applying the hybrid radiation technique are relatively similar to those obtained from the translating and pulsating Green function method. This confirmation is made in comparisons with the results of solely applying either the free surface damping, or the Sommerfeld radiation condition. By applying the proposed hybrid radiation technique, the wave patterns, hydrodynamic coefficients, and motion responses of the Wigley III hull are finally calculated, and compared with those of model tests. It is found that, in comparison with the model test results, the three-dimensional Rankine source method adopting the proposed hybrid radiation technique is more robust in terms of accuracy and numerical stability, as well as in obtaining the forward speed seakeeping solution.

오존최대농도지표를 이용한 오존단기예측모형 개발 (Development of a Short-term Model for Ozone Using OPI)

  • 전의찬;김정욱
    • 한국대기환경학회지
    • /
    • 제15권5호
    • /
    • pp.545-554
    • /
    • 1999
  • We would like to develop a short-term model to predict the time-related concentration of ozone whose reaction mechanism is complex. The paper targets Seoul where an ozone alert system has recently been employed. In order to develop a short-term prediction model for ozone, we suggested the Ozone Peak Indicator(OPI), an equivalent of the potential daily maximum ozone concentration, with precursors being the only limiting factor, and we calculated the Ozone Peak Indicarot as OPI={$ rac{(O_3)_{max}cdot(H_{eH})_{max}(Rad)_{max}$ to preclude the influence of mixing height and solar radiation on the daily maximum ozone concentration. The OPI on the day of the prediction is to be calcultated by using the relation between OPI and the initial value of precursors. The basic prediction formula for time-related ozone concentration was established as $O_3(1)={(OPI)cdot Rad(t-2)H_{eH}}$, using the OPI, solar radiation two hours before prediction and mixing height. We developed, along with the basic formula for predicting photochemical oxidants, "SEOM"(Seoul Empirical Oxidants Model), a Fortran program that helps predict solar radiation and mixing height needed in the prediction of ozone pollution. When this model was applied to Seoul and an analysis of the correlation between the observed and the predicted ozone concentrations was made through SEOM, there appeared a very high correlation, with a coefficient of 0.815. SEOM can be described as a short-term prediction model for ozone concentration in large cities that takes into account the initial values of precursors, and changes in solar radiation and mixing height. SEOM can reflect the local characteristics of a particular and region can yield relatively good prediction results by a simple data input process.t process.

  • PDF

모사된 화재의 열적환경에서 FDS를 이용한 온도 예측오차에 관한 수치해석 연구 (A Numerical Study on Temperature Prediction Bias using FDS in Simulated Thermal Environments of Fire)

  • 한호식;김봉준;황철홍
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.14-20
    • /
    • 2017
  • A numerical study was conducted to identify the predictive performance for the bare-bead thermocouple (TC) using FDS (Fire Dynamics Simulator) in simulated thermal environments of fire. A relative prediction bias of TC temperature calculated from reverse-radiation correction by FDS was evaluated with the comparison of previous experimental data. As a result, it was identified that the TC temperatures predicted by FDS were lower than the temperatures measured by bare-bead TC for the ranges of heat flux and gas temperature considered. The relative prediction bias of TC temperature by FDS was gradually increased with the increase in radiative heat flux and also significantly increased with the decrease in the gas temperature. Quantitatively, at the gas temperature of $20^{\circ}C$, the TC temperature predicted by FDS had the relative bias of approximately -20% with the radiative heat flux of $20kW/m^2$ corresponding to thermal radiation level of the flashover. It is predicted from the present study that more accurate validation of fire modeling will be possible with the quantitative prediction bias occurred in the process of reverse-radiation correction of temperature predicted by FDS.