• Title/Summary/Keyword: Radiation Generator

Search Result 236, Processing Time 0.026 seconds

Comparison of Output and Radiation Quality of X-rays according to the Full-Wave Rectification Method and Dual-Voltage Rectification Method of an X-ray Generator (X선 고전압장치의 전파 및 배전압 정류방식에 따른 X선 출력 및 선질 비교)

  • Kim, Tae-Gon;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.534-538
    • /
    • 2010
  • X-ray systems for medical treatment use noninvasive procedures. Being capable of locally inspecting the inside of the body, X-ray systems are routinely used for basic diagnosis. X-ray systems to be used for medical purposes were originally made with a gas filled tube inside an induction coil in the initial stages of development but with this approach it becomes difficult to take a satisfactory picture through thick body sections, non invasively. However continued development made it possible to take non-invasive pictures of breasts, blood vessels and other body parts through thick body sections. Recently, high-voltage X-ray generators of more compact size, increased generation efficiency, and sophisticated output control have become possible. All of these features are made possible by the use of a high-frequency output from an inverter and a fast switching semiconductor device. In this paper, we describe a new X-ray generator operating with a resonant inverter in order to reduce switching loss and high frequency noise. In addition, in order to identify the differences amongst types of rectification, we have compared output and the quality of X-ray pictures obtained with full-wave rectification and dual-voltage rectification methods.

Research on the Actual Condition of the radiation Safety Management(RSM) for the Educated Training of the Dental Diagnostics X-ray Generators (교육용 치과 엑스선 발생장치에 대한 방사선 안전 관리 실태 조사)

  • Lee, Mihyeon;Yu, Yunsik;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.467-477
    • /
    • 2014
  • The purpose of this study is to offer data base for establishment of dental training x-ray generator based safety usage through surveying real radiation safety management state of radiation worker's in plan of operations that have dental training x-ray generators and use it. For it, comprehensive references were surveyed referring reports of current state of regulation technique development and domestic radiation safety evaluation and nuclear related legislation regarding radiation safety management of dental training x-ray generators. On the basis of it, questionnaires were filled in about respondent's general characteristic radiation safety manager's status current state of radiation safety management and the level of knowledge & consciousness. For the study, the survey was conducted to 224 people of radiation safety managers and university graduates training assistants and full-time professors who can treat dental training x-ray generators in education center. through this survey 95 questionnaires were used as analysis materials except the insufficient and omitted responses. As a method of analysis, the frequency and percentage were figured out with the general characteristics and safety manager's status. Chi-square test for frequency and correlation per question analysis and Pearson correlation analysis for crosslevel correlation were done with current state of radiation safety management and knowledge & consciousness level. As a result, running dental training x-ray generators was dealt with by 20's to 40's who have high education level over post undergraduate degree and major in dental hygienic. In addition, female have higher consciousness level for radiation safety management than male. It shows significal linear relation statistically(${\chi}^2$ >5, 0.1${\chi}^2$ >5, 0.3${\chi}^2$ >5, 0.3

Usefulness Evaluation and Fabrication of the Radiation Shield Using 3D Printing Technology (3차원 프린팅 기술을 이용한 차폐체 제작 및 유용성 평가)

  • Jang, Hui-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.1015-1024
    • /
    • 2019
  • In the medical field, X-rays are essential in the diagnosis and treatment of diseases, and the use of X-rays continues to increase with the development of imaging technology, but X-rays have the disadvantage of radiation exposure. Although lead protection tools are used in clinical practice to protect against radiation exposure, lead is classified as a heavy metal and can cause harmful reactions such as lead poisoning. Therefore, the purpose of this study is to investigate the usefulness of the shield fabricated using materials of FDM (Fused Deposition Modeling) 3D printer. In order to confirm the filament's line attenuation factor, phantoms were fabricated using PLA, XT-CF20, Wood, Glow and Brass, and CT scan was performed. And the shielding sheet of 100 × 100 × 2 mm size was modeled, the dose and shielding rate was measured by using a diagnostic X-ray generator and irradiation dose meter, and the shielding rate with lead protection tools. As a result of the experiment, the CT number of the brass was measured to be the highest, and the shielding sheet was manufactured by using the brass. As a result of confirming with the diagnostic X-ray generator, the shielding rate was increased in the shielding sheet having a thickness of 6 mm upon X-ray irradiation under the condition of 100 kV and 40 mAs. It measured by 90% or more, and confirmed that the shielding rate is higher than apron 0.25 mmPb. As a result of this study, it was confirmed that the shield fabricated by 3D printing technology showed high shielding rate in the diagnostic X-ray region. there was.

Effect of Flame Radiative Heat Transfer in Horizontal-Type HRSG with Duct Burner (덕트 버너 추가에 따른 수직형 HRSG 내 화염 복사 열전달의 영향에 관한 연구)

  • Kim, Daehee;Kim, Seungjin;Choi, Sangmin;Lee, Bong Jae;Kim, Jinil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.197-204
    • /
    • 2013
  • A method was developed for analyzing the radiation heat transfer from the duct burner flame to the heat exchanger in a heat recovery steam generator (HRSG) in order to supplement the existing thermal design process. The burner flame and the heat exchanger were considered to be imaginary planes, and the flame temperature, surface, and emissivity were simplified using an engineering approach. Three analysis cases in which the duct burner position and fuel were changed were considered. The calculated flame radiative heat transfer and local flux on the heating surface were compared with those of 3-atomic gas radiation and convection. In all analysis cases, heat transfer by 3-atomic gas radiation was very small. The ratio of the flame radiative heat transfer to the convection heat transfer on the heating surface was estimated to be as high as 8-41%. Moreover, the local heat flux on the heating surface centerline was dominated by flame radiative heat flux.

Structural Design and Thermal Analysis of a Module Coil for a 750 kW-Class High Temperature Superconducting Generator for Wind Turbine (풍력 터빈용 750 kW 급 고온초전도 발전기 모듈의 코일 구조 설계 및 열 해석)

  • Tuvdensuren, Oyunjargal;Go, Byeong-Soo;Sung, Hae-Jin;Park, Min-Won
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.33-40
    • /
    • 2019
  • Many companies have tried to develop wind power generators with a larger capacity, smaller size and lighter weight. High temperature superconducting (HTS) generators are more suitable for wind power systems because they can reduce volume and weight compared with conventional generators. However, the HTS generator has problems such as huge vacuum vessel and the difficulty of repairing the HTS field coils. These problems can be overcome through the modularization of the HTS field coil. The HTS module coil require a current leads (CLs) for deliver DC current, which causes a large heat transfer load. Therefore, CLs should be designed optimally for reducing the conduction and Joule heat loads. This paper deals with a structural design and thermal analysis of a module coil for a 750 kW-class HTS generator. The conduction and radiation heat loads of the module coils were analysed using a 3D finite element method program. As a result, the total thermal load was less than the cooling capacity of the cryo-cooler. The design results can be effectively utilized to develop a superconducting generator for wind power generation systems.

Managerial Factors Influencing Dose Reduction of the Nozzle Dam Installation and Removal Tasks Inside a Steam Generator Water Chamber (증기발생기 수실 노즐댐 설치 및 제거작업의 피폭선량 저감에 영향을 주는 관리요인에 관한 연구)

  • Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.559-568
    • /
    • 2017
  • Objective: The aim of this study is to investigate the effective managerial factors influencing dose reduction of the nozzle dam installation and removal tasks ranking within top 3 in viewpoint of average collective dose of nuclear power plant maintenance job. Background: International Commission on Radiation Protection (ICRP) recommended to reduce unnecessary dose and to minimize the necessary dose on the participants of maintenance job in radiation fields. Method: Seven sessions of nozzle dam installation and removal task logs yielded a multiple regression model with collective dose as a dependent variable and work time, number of participants, space doses before and after shield as independent variables. From the sessions in which a significant reduction in collective dose occurred, the effective managerial factors were elicited. Results: Work time was the most important factor contributing to collective dose reduction of nozzle dam installation and removal task. Introduction of new technology in nozzle dam design or maintenance job is the most important factor for work time reduction. Conclusion: With extended task logs and big data processing technique, the more accurate prediction model illustrating the relationship between collective dose reduction and effective managerial factors would be developed. Application: The effective managerial factors will be useful to reduce collective dose of decommissioning tasks as well as regular preventive maintenance tasks for a nuclear power plant.

Development of Dual Energy Radiation Detector (이중 에너지 방사선 검출기 개발)

  • Yeo, Hwa-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.5-11
    • /
    • 2010
  • In this paper, we are suggested development of dual-mode detector for dual-energy digital radiography. Design of dual-energy radiography module for commercial BIS (Baggage Inspection System) is used in the spectrum of the X-ray generator and detector for dual-mode features and radiological characteristics were analyzed. BIS suggestl on the image detector module being used to target X-ray tube to simulate X-ray spectrum and simulated spectrum to offer through the new radiographic characteristics of the detector modules were investigated. Using X-ray experiments with an increase in the thickness of the copper filter low energy detector (LED) and high-energy detector (HED) as the difference between the output signal increases. HED, especially in the size of the output signal decreases with increasing thickness of the copper filter was found.

Measurement of Flow Characteristics of Digester Installed Tray Motioned Mixer by Using Radiotracer (방사성추적자를 이용한 수직교반형 소화조의 유동 특성 측정)

  • Moon, Jinho;Park, Jang Guen;Kang, Munhu;Jung, Sung-Hee
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.131-135
    • /
    • 2015
  • The flow characteristics of fluid were measured using radioactive tracer in pilot scale digester with tray motion mixer. In consideration of the detection volume of the detector and the size of the digester, 20 detectors were installed in the digester. The radioactive tracer eluted 8 mCi of $^{68}Ga$ from $^{68}Ge/^{68}Ga$ generator was injected into the digester bottom. After radiotracer injection, the flow pattern was measured on the basis of the initial movement of the tracer until its diffusion completely. Most of tracer moved to the wall along the bottom of the digester, and then rose along the wall. The other tracer moved up along the mixer, and then moved to the wall direction along the surface.

Establishment of the Monoenergetic Fluorescent X-ray Radiation Fields (교정용 단일에너지 형광 X-선장의 제작)

  • Kim, Jang-Lyul;Kim, Bong-Hwan;Chang, Si-Young;Lee, Jae-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.33-47
    • /
    • 1998
  • Using a combination of an X-ray generator Installed in radiation calibration laboratory of Korea Atomic Energy Research Institute (KAERI) and a series of 8 radiators and filters described in ISO-4037, monoenergetic fluorescent X-rays from 8.6 keV to 75 keV were produced. This fluorescent X-rays generated by primary X-rays from radiator were discriminated $K_{\beta}$ lines with the aid of filter material and the only $K_{\alpha}$ X-rays were analyzed with the high purity Ge detector and portable MCA. The air kerma rates were measured with the 35 co ionization chamber and compared with the calculational results, and the beam uniformity and the scattered effects of radiation fields were also measured. The beam purities were more than 90 % for the energy range of 8.6 keV to 75 keV and the air kerma rates were from 1.91 mGy/h (radiator : Au, filter : W) to 54.2 mGy (radiator : Mo, filter : Zr) at 43 cm from center of the radiator. The effective area of beam at the measurement point of air kerma rates was 12 cm ${\times}$ 12 cm and the influence of scattered radiation was less than 3 %. The fluorescent X-rays established in this study could be used for the determination of energy response of the radiation measurement devices and the personal dosemeters in low photon energy regions.

  • PDF

Development and Thermal Distribution of An RF Capacitive Heating Device (유전가열장치의 개발과 온열분포)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon;Loh, John-Kyu;Kim, Byung-Soo
    • Radiation Oncology Journal
    • /
    • v.5 no.1
    • /
    • pp.49-58
    • /
    • 1987
  • Hypertermia for the treatment of cancer has been introduced for a long time and the biological effect for the use of hyperthermia to treat malignant tumors has been well established and encouraging clinical results have been obserbed. Unfortunately, however, the engineering or technical aspects of hyperthermia for the deep seated tumors has not been satisfactory. We developed the radiofrequency capactive hyperthermia device (Greenytherm-GY8) in cooperation with Yonsei Cancer Center and Green Cross Medical Corporation. It was composed with $8{\sim}10MHz$ RF generator, capacitive electrode, matching system, cooling system, temperature measuring system and control PC computer. The thermal profile was investigated in agar phantom, animals and in human tumors, heated with capactivie RF device. Deep and homogeneous heating could be achieved in a large phantom of 25cm diameter and 19cm thick when heated with a pair of 23cm diameter electrodes, coupled to both bases of the phantom, when the size of the two electrodes was not the same, the region near the smaller electrode was preferentially heated. It was, therefore, possible to control the depth of heating by choosing proper size of electrodes. Therapeutic temperature $(42^{\circ}C{\sim}43^{\circ}C)$ could be obtained in the living animal experiments. Indications are that deep heating of humn tumors might be achieved with the capacitive method, provided that subcutaenous fat layer is cooled by temperature controlled bolus and large size of electrodes.

  • PDF