• Title/Summary/Keyword: Radiation Defense

Search Result 185, Processing Time 0.212 seconds

The Design of X-band Cassegrain Antenna for Spill-over Suppression (Spill-over 억제를 위한 X-band 카세그레인 안테나 설계 연구)

  • Lee Woo-Sang;Jang Won;Lee Byoung-Moo;Yang Gi-Joo;Lee Sang-Heun;Yoon Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.829-835
    • /
    • 2006
  • In this paper, new structure of the Cassegrain reflector antenna whose spill-over is efficiently reduced by modified reflectors is proposed for high power. It can be achieved by designing the geometry of subreflector in Cassegrain system using two hyperbolic curves in order to be suitable a lager beamwidth of feeding pattern without broadening main reflector. Finally, radiation efficiency and side lobe level of the proposed Cassegrain reflector antenna can be improved respectively 9 %, 10 dB than conventional one.

A Design on the Four-Horn Triple-Mode Type Monopulse Feeder at X-Band (X-대역 4혼 삼중 모드 모노펄스 급전기 설계)

  • Kim, Chan-Hong;Kim, Seung-Gak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.528-536
    • /
    • 2010
  • A monopulse feeder gives the most important impact upon the radiation pattern characteristics of a multi-function radar or a tracking radar which uses the space feed. It is described that the triple-mode type monopulse feeder which possesses the optimum aperture illumination for three monopulse channels is designed and measured in this paper. The measured results show that the designed feeder has not only the characteristics of the optimum aperture illimination in each channel and also very low return loss over the 10 % of fractional bandwidth at X-band. This means that the feeder provides the antenna system with low sidelobe level and high monopulse slope characteristics.

Analysis on the View Factor of Data Storage and Handling Units's Radiators (자료처리/저장장치 방열판의 View Factor 분석)

  • Hwang, Inyoung;Shin, Somin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.678-685
    • /
    • 2017
  • The radiator of the data storage and handling units onboard the earth observation satellite is a groove-type radiator covered with a shield because of the periodic high heat dissipation and design characteristics of arrangement and mountability of the unit. The effect of the groove-type radiator and that of the shield versus plane radiator were verified through the thermal vacuum test. Through the test result, the temperatures of the radiator and the heat exchange due to the view factor were analyzed by using the analytical method. Conclusively the thermal performance of the shield dissipation plate was verified.

A Study on Optimal Deployment for Improvement of EMI between MOSCOS and ES DF Antenna on a Surface Ship (수상함 MOSCOS와 ES 방향탐지 안테나간의 전자기 간섭 개선을 위한 최적배치 연구)

  • Chang, Hoseong;Son, Yoonjun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • During the sea trial, we discovered EMI between MOSCOS and ES DF antenna. CW emitted by MOSCOS raised the threshold level of ES DF antenna. As a result, direction finding rate of ES has been decreased. This is a study for the improvement of EMI between the antennas mounted on a surface ship. An analysis is accomplished for MOSCOS, ES DF antenna and Jamming transmitter. This paper presents the method how to solve EMI based on the measurements and calculations about the ES DF antenna receiving level, MOSCOS radiation pattern and Jamming transmitter thermal noise. The test was performed with optimal deployment of MOSCOS on a surface ship. After changing the position of MOSCOS, EMI has been decreased significantly.

ELECTRONIC SAFING OF A DIODE LASER ARM-FIRE DEVICE

  • Kenneth E. Willis;Suk Tae Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.171-175
    • /
    • 1995
  • Semiconductor diode lasers that can generate one watt or more of optical energy for tens of milliseconds (quasi continuous wave) are now readily available. Several researchers have demonstrated that this power level, when properly coupled, can reliably initiate pyrotechnic mixtures. This means that the initiator containing the pyrotechnic can be protected against inadvertent initiation from electromagnetic radiation or electrostatic discharge by a conducting Faraday cage surrounding the explosive. Only a small dielectric window penetrates the housing of the initiator, thereby eliminating the conductors necessitated by a bridgewire electroexplosive device. The diode laser itself, however, functions at a low voltage (typically 3 volts) and hence is susceptible to inadvertent function from power supply short circuits, electrostatic discharge or induced RF energy. The rocket motor arm-fire device de-scribed in this paper uses a diode laser, but protects it from unintentional function with a Radio Frequency Attenuating Coupler (RFAC).The RFAC, invented by ML Aviation, a UK company, transfers power into a Faraday cage via magnetic flux, thereby protecting the diode, its drive circuit and the pyrotechnic from all electromagnetic and electrostatic hazards. The first production application of a diode laser and RFAC device was by the Korean Agency for Defense Development.

  • PDF

Characteristics Evaluation of the Lens for Underwater Acoustic Imaging (수중음향 영상화를 위한 렌즈 제작 및 특성 평가)

  • Cho, Wan-Ho;Kwon, Hyu-Sang;Cho, Yo-Han;Seo, Hee-Seon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.687-696
    • /
    • 2016
  • A series of process to design an acoustic lens for underwater imaging is reviewed and the method to evaluate characteristics of the lens is investigated. If the target specification of lens is given, the design process consists of the material selection, evaluation of its properties, lens geometry design, prediction of lens characteristics, manufacturing, and evaluation by measurement. In this study, an actual acoustical lens is made by cutting polymethylpentene block. The characteristics of lens are predicted by the hybrid method, combination of ray tracing and Rayleigh integral. For the direct comparison between the prediction and measurement results, a simulation method based on the equivalent source method is suggested to reflect the actual radiation pattern of transducer used for measurements. Finally, the measurement is conducted in a small water tank to observe the actual characteristics of the manufactured lens.

A Study on the Establishment of Environmental Test Procedures for the UAV (무인항공기 운용 환경조건 시험절차 수립)

  • Yun, Sanguk
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.87-94
    • /
    • 2019
  • In this paper, we test procedures to demonstrate operating environmental conditions that can be exposed to UAV during its life-cycle are proposed. They are set up to be used in a large-sized climate chamber, one of the facilities of the Agency for Defense Development corresponding with the system requirements. The test steps and profile details were more specifically suggested for rainfall, humidity, and temperature (low-temperature storage and operation, high-temperature operation and solar radiation), and MIL-STD-810G w/Change-1-based.

Development of a DEVS Simulator for Electronic Warfare Effectiveness Analysis of SEAD Mission under Jamming Attacks (대공제압(SEAD) 임무에서의 전자전 효과도 분석을 위한 DEVS기반 시뮬레이터 개발)

  • Song, Hae Sang;Koo, Jung;Kim, Tag Gon;Choi, Young Hoon;Park, Kyung Tae;Shin, Dong Cho
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.4
    • /
    • pp.33-46
    • /
    • 2020
  • The purpose of Electronic warfare is to disturbe, neutralize, attack, and destroy the opponent's electronic warfare weapon system or equipment. Suppression of Enemy Air Defense (SEAD) mission is aimed at incapacitating, destroying, or temporarily deteriorating air defense networks such as enemy surface-to-air missiles (SAMs), which is a representative mission supported by electronic warfare. This paper develops a simulator for analyzing the effectiveness of SEAD missions under electronic warfare support using C++ language based on the DEVS (Discrete Event Systems Specification) model, the usefulness of which has been proved through case analysis with examples. The SEAD mission of the friendly forces is carried out in parallel with SSJ (Self Screening Jamming) electronic warfare under the support of SOJ (Stand Off Jamming) electronic warfare. The mission is assumed to be done after penetrating into the enemy area and firing HARM (High Speed Anti Radiation Missile). SAM response is assumed to comply mission under the degraded performance due to the electronic interference of the friendly SSJ and SOJ. The developed simulator allows various combinations of electronic warfare equipment specifications (parameters) and operational tactics (parameters or algorithms) to be input for the purpose of analysis of the effect of these combinations on the mission effectiveness.

Influence of Mercury on the Repair of Ionizing Radiation-induced DNA Damage in Coelomocytes of Eisenia fetida (이온화 방사선에 의해 손상된 Eisenia fetida 체강세포의 DNA 수복에 수은이 미치는 영향)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • Mercury known as quicksilver, is the most common cause of heavy metal toxicity. Toxicity caused by excessive mercury exposure is now being recognized as a widespread environmental problem and is continuing to attract a great deal of public concerns. The mercury genotoxicity could be its effect on DNA repair mechanisms, which constitute the defense system designated to protect genome integrity. The objective of this study is to confirm that mercuric chloride inhibits the repair of gamma ray-induced DNA damage. The earthworm of Eisenia fetida was chosen for this study because it is an internationally accepted model species for toxicity testing with a cosmopolitan distribution. Experiments were done to identify the levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida irradiated with 20 Gy gamma rays alone or with gamma rays after 40 mg $kg^{-1}$ $HgCl_2$ treatment by means of the single cell gel electrophoresis assay. The Olive tail moments were measured during 0~96 hours after irradiation. The repair time in the animals treated with the combination of $HgCl_2$ and ionizing radiation was nearly five times longer than that in the animals treated with ionizing radiation alone. Also, E. fetida exposed to mercury showed a statistically lower repair efficiency of gamma ray-induced DNA damage. The results suggest that the mercury could even have deleterious effects on the DNA repair system. Influence of mercury on the DNA repair mechanisms has been confirmed by this study.

Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation (Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현)

  • Park, Ji-Young;Baek, Dong-Won;Nili, Mohammad;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • N-acetyl-L-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC used as a radioprotector against ionizing radiation (IR)-induced injury and damage. The aim of this study was to evaluate the radioprotective effects of NAC against IR-induced cell damage in Saccharomyces cerevisiae and the antioxidative effect of NAC on transcriptional level of yeast antioxidant enzyme genes such as superoxide dismutase (SOD) and catalase. In the present study, yeast cells were pretreated with various concentrations of NAC and/or irradiated with various doses of gamma rays. The cell viability was measured by counting the cell forming unit (CFU). The quantitative real-time PCR was performed for analysis of gene expression of SOD and catalase. The viability of irradiated cells was not improved by pretreatment with NAC. Ionizing radiation with 100 Gy highly induced the gene expression of antioxidant enzymes. In the irradiated group with NAC pretreatment, the gene expression of SOD and catalase was gradually reduced with the increased concentrations of NAC. These results indicate that NAC can act as a useful antioxidant to scavenge reactive oxygen species in vivo, but does not protect cells against IR-induced cell death in S. cerevisiae.