• Title/Summary/Keyword: Radiant Method

Search Result 132, Processing Time 0.021 seconds

Antimicrobial Effect of Ethanol Extract of Dryopteris crassirhizoma Nakai on Propionibacterium acnes (관중(Dryopteris crassirhizoma Nakai) 추출물의 Propionibacterium acnes에 대한 항균 효과)

  • Yoon, Chang-Soon;Kim, Hyun-Ju;Lim, Hye-Won;Choi, Shin-Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.3 s.58
    • /
    • pp.201-208
    • /
    • 2006
  • Propionibacterium acnes have been recognized as pus-forming bacteria triggering an inflammation in acne. The present study was conducted to evaluate antimicrobial activities of Dryopteris crassirhizoma Nakai against these etiologic agents of acne vulgaris and application possibility as a cosmetic resource. D. crassirhizoma crude extract and hexane fraction was prepared and its anti-acne effect against Propionibacterium acnes was investigated with minimum inhibitory concentration (MIC) and paper disk diffusion method. The MIC of D. crassirhizoma crude extract and hexane fraction was 0.008 mg/mL and 0.001 mg/mL, respectively. This implies that D. crassirhizoma extract may be an efficient anti-acne ingredient for cosmetics, as a crude extract. The paper disk diffusion assay showed that its anti-acne effect was similar to that of triclosan. The cytotoxic effect of D. crassirhizoma extract was determined by a colorimetric MTT assay using HaCaT cell line and D. crassirhizoma extract exhibited lower cytotoxic effects. Finally, we examine the stability of D. crassirhizoma extract to temperature and pH. The D. crassirhizoma extract was very stable to high temperatures ($25{\sim}121^{\circ}C$) and to wide pH range ($pH\; 2{\sim}11$), suggesting its utilization for cosmetics.

Studies on the Anti-acne Effect of Agrimonia pilosa Ledeb. (선학초 추출물의 항여드름균 효능 연구)

  • Yoon, Chang-Soon;Kim, Hyun-Ju;Lim, Hye-Won;Kim, Bo-Hyeon;Kim, Hack-Soo;Choi, Shin-Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.53-58
    • /
    • 2006
  • Agrimonia pilosa Ledeb. is a perennial plant, which naturally habitats in whole area of Korea, and where it is popularly used for the traditional remedies. In the present study, A. pilosa Ledeb. extract was prepared to determine the anti-acne effects and application possibility as a cosmetic resource. A pilosa Ledeb. was extracted with methanol and its anti-acne effect against Propionibacterium acnes was investigated via minimum inhibitory concentration (MIC) and paper disk diffusion method. The MIC of A. pilosa Ledeb. extract and triclosan was 0.05 mg/mL and 0.04 mg/mL, respectively. This implies that A. pilosa Ledeb. extract nay be an efficient anti-acne ingredient for cosmetics, considering that it is a crude extract. The paper disk diffusion assay showed that its anti-acne effect was similar to that of triclosan. Furthermore, A. pilosa Ledeb. extract effectively inhibited the growth of several aerobic microorganisms including Staphylococcus aureus. Finally, we examine the stability of the extract to temperature and pH. The extract was very stable to high temperatures ($70{\sim}121^{\circ}C$) and to pH ($pH 2{\sim}11$), suggesting its utilization for cosmetics.

An Experimental Study on the Application of Polypropylene Capillary Tube Cooling System (폴리프로필렌 모세유관 냉방시스템의 적용에 관한 실험적 연구)

  • Lee Young-Ju;Jin Wu-feng;Yeo Myoung-Souk;Kim Kwang-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.873-881
    • /
    • 2005
  • In this study, we made RFC, RCC and NCC according to the method by which polypropylene capillary tube was adopted, and evaluated cooling performance of each system through model experiments. We also investigated an applicability of the combined use of radiant cooling and dehumidification system. The results are as follows: In case of normal cooling load, RFC and RCC maintained set temperature without a condensation. But, in case of peak cooling load, RFC and RCC resulted in the lack of cooling performance and caused a condensation at the radiation surface. Consequently, the only use of polypropylene capillary tube is considered not to be enough for cooling in real application. Using the combination of a dehumidification and radiant cooling system maintained the set temperature without a condensation. NCC kept the set temperature at anytime without a condensation. It is more economic than packaged air-conditioner system due to the cooling effect of the floor surface.

Application of spectral image - Present and Promise -

  • Miyake, Yoichi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1158-1159
    • /
    • 2009
  • Tri-stimulus values of CIE-XYZ and RGB values obtained by photographic film, CCD camera or scanner depend on the spectral sensitivity of imaging devices and the spectral radiant distribution of the illumination. It is important to record and reproduce the reflectance spectra of the object for true device independent color reproduction and high accurate recording of the scene. In this paper, a method to record the reflection spectra of the object is introduced and its application to spectral endoscopes is presented.

  • PDF

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

Measurement of the Ionization Coefficient in Gases by the Luminous-flux Method (광속법을 이용한 기체의 전이계수 측정)

  • 백용현;하성철;이복희;김희택;김정섭
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.7
    • /
    • pp.289-296
    • /
    • 1985
  • The Townsend primary ionization coefficient a was measured by the luminous-flux method using the fact that the intensity of radiant light is proportional to electron density in the townsend discharge domain. The ranges of measurements were 15for He gas and 10

  • PDF

Novel Accuracy Enhancement Method for Absolute Temperature Measurement Using TEC-LESS Control in Uncooled Thermal Imaging (비냉각 열상시스템에서 TEC-Less를 이용한 절대온도 측정 정밀도 향상 기법)

  • Han, Joon Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.41-47
    • /
    • 2012
  • Every object over $O^{\circ}K$ emits radiant energy based on its own temperature. Uncooled thermal imaging system displays the detected incident radiant energy as an image by signal processing. Recently, the uncooled thermal imaging system is applied to various areas such as medical, industrial, and military applications. Also, several researches are in progress to find new applications of the uncooled thermal imaging system. In this paper, we present effective method for controlling TEC-less detector in the uncooled thermal imaging system and also present the efficient control scheme for maximizing the accuracy of temperature measurement. The proposed scheme is to apply TEC-less and temperature detection algorithm in Uncooled thermal imaging system. In results of tests performed by using the actual chamber, we acquired images of better quality than the former system and temperature measurement accuracy was improved to less than $1^{\circ}C$.

Investigation on Numerical Integration for Radiation Heat Transfer in Radiating Fluid (복사유체의 복사열전달 수치 적분에 관한 연구)

  • Han Cho Young
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.43-51
    • /
    • 2004
  • Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field. In this case the thermofluid properties of radiating fluid vary with the variation of temperature field caused by absorption and emission of radiant heat. To analyze the radiation heat transfer in radiating fluid, the simultaneous solution of the radiative transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. The finite volume method (FVM) and the discrete ordinates method (DOM) are usually employed to simulate radiation problems in generalized coordinates. These two representative methods are examined and compared, especially in view of the numerical integration of the radiation intensity over solid angle. The FVM shows better accuracy than the DOM owing to less constraints of the selection of control angle.

Investigation on Numerical Integration for Radiation Heat Transfer in Radiating Fluid (복사유체의 복사열전달 수치 적분에 관한 연구)

  • Han Cho Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.62-70
    • /
    • 2004
  • Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field. In this case the thermofluid properties of radiating fluid vary with the variation of temperature field caused by absorption and emission of radiant heat. To analyze the radiation heat transfer in radiating fluid, the simultaneous solution of the radiative transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. The finite volume method (FVM) and the discrete ordinates method (DOM) are usually employed to simulate radiation problems in generalized coordinates. These two representative methods are examined and compared, especially in view of the numerical integration of the radiation intensity over solid angle. The FVM shows better accuracy than the DOM owing to less constraints of the selection of control angle.

  • PDF

Thermal radiation model for rocket plume base heating using the finite-volume method (유한체적법에 의한 로켓플룸 저부가열의 열복사 모델)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3598-3606
    • /
    • 1996
  • The finite volume method for radiation is applied to investigate a radiative heating of rocket base plane due to searchlight and plume emissions. Exhaust plume is assumed to absorb, emit and scatter the radiant energy isotropically as well as anisotropically, while the medium between plume boundary and base plane is cold and nonparticipating. Scattering phase function is modelled by a finite series of Legendre polynomials. After validating benchmark solution by comparison with that of previous works obtained by the Monte-Carlo method, further investigations have been done by changing such various parameters as plume cone angle, scattering albedo, scattering phase function, optical radius and nozzle exit temperature. The results show that the base plane is predominantly heated by the plume emission rather than the searchlight emission when the nozzle exit temperature is the same as that of plume.