• Title/Summary/Keyword: Radial stress

Search Result 419, Processing Time 0.025 seconds

Flexural Vibrations Of Simply Supported Sectorial Plates with Simply Supported And Free Radial Edges (단순지지와 자유의 방사연단을 갖는 단순지지 부채꼴형 평판의 휨진동)

  • Han, Bong-Koo;Kim, Joo-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.217-223
    • /
    • 1998
  • 본 논문에서는 원형연단이 단순지지 되어 있을 때 단순과 자유의 방사연단 조건을 갖는 부채꼴형 평판의 휨진동에 대한 엄밀한 해석방법을 제시한다. Ritz방법을 이용하여 수직진동변위를 두가지 적합 함수식으로 가정하였다. 이러한 두가지의 적합 함수식은 (1) 수학적으로 완전한 대수삼각다항함수와, (2) 둔각 모서리에서의 휨모멘트 특이도를 고려하는 모서리함수로 구성되어있다. 본 연구에서는 방사연단의 둔각 모서리를 이루는 부채꼴형 각도의 범위에 따른 엄밀한 진동수 및 수직진동 변위의 전형적인 등고선을 제시하였다.

  • PDF

Dynamic Analysis of Rotor Eccentricity in Switched Reluctance Motor with Parallel Winding

  • Li, Jian;Choi, Da-Woon;Cho, Yun-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.85-87
    • /
    • 2008
  • This paper presents dynamic characteristics in Switched Reluctance Motor (SRM) with rotor eccentricity and proposes the reduction method of rotor eccentricity effects by the different winding connections. These characteristics investigations are computed by 2D transient magnetic FEM analysis coupled with external circuits. The radial and unbalance magnetic force in the stator, which is the main exciting force of the vibration, is calculated using Maxwell stress method and compared with the performance characteristics according to the serial and parallel connections of windings. The influence of winding method counteracting unbalance forces on the rotor vibration behavior is estimated by the current waveforms of the paralleled paths under rotor eccentricity.

  • PDF

Development of the Emotion Evaluation System for the Repeated Computational Stress (반복 연산 스트레스에 대한 감성 평가 시스템 구현)

  • 박광훈;하은호;김동윤;김승태;김동선
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2001
  • 본 연구에서는 20대 남자 대학생 45명에게 반복 연산 스트레스를 유발시키기 위하여 세 단계의 난이도를 갖는 덧셈 연산을 수행하게 하였으며, 이때 각 피검자들로부터 이에 대한 생체 신호를 측정하였다. 측정된 생체 신호로부터 제시된 연산 스트레스에 대한 감성을 평가하기 위하여 7개의 생체 파라미터를 사용하였고, 비선형 특성을 갖는 연산 스트레스에 대한 감성을 평가하기 위하여 세 단계의 구조를 갖는 감성 평가 시스템을 구성하였다. 또한 감성평가 시스템의 성능을 비교하기 위하여 평가 시스템의 각 단계를 선형 판별 알고리즘인 Least Mean Square Algorithm을 이용한 경우와 비선형 판별 알고리즘인 Radial-Based Functional-link Net을 이용한 경우를 사용하였다. 각 감성 평가 시스템은 Cross Validation을 사용하여 성능을 비교하였으며, 전체 감성 평가 시스템에서의 연산 스트레스에 대한 감성 평가 정확도는 선형 알고리즘을 이용할 경우 63.02%, RBFLN을 이용한 경우는 83.07%를 얻었다.

  • PDF

Experimental evaluation of fatigue strength for small diameter socket welded joints under vibration loading condition

  • Oh, Chang-Young;Lee, Jun-Ho;Kim, Dong-Woo;Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3837-3851
    • /
    • 2021
  • To investigate how the fabrication and repair of socket welded joints could be used to enhance fatigue resistance under vibration condition, experimental test data of installation conditions that potentially influence fatigue strength were analyzed with the S-N curve. It was found that the decreasing fatigue strength of stainless steel socket welded joints was attributed to the effect of high heat input of welding process. The effect of welding method, slip-on gap and radial-gap conditions on fatigue strength was insignificant. The test data of repair technique application, 2 × 1 leg length and of socket weld overlay, clearly showed higher fatigue strength but there was a limitation for higher stress region because of the weld toe crack.

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze;Liu, Yulan;Wang, Biao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1250-1258
    • /
    • 2021
  • In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes

  • Wu, Xiongwei;Fang, Ting
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.617-627
    • /
    • 2022
  • In the current study, the nonlinear impact of the Von-Kármán theory on the vibrational response of nonhomogeneous structures of functionally graded (FG) nano-scale tubes is investigated according to the nonlocal theory of strain gradient theory as well as high-order Reddy beam theory. The inhomogeneous distributions of temperature-dependent material consist of ceramic and metal phases in the radial direction of the tube structure, in which the thermal stresses are applied due to the temperature change in the thickness of the pipe structure. The general motion equations are derived based on the Hamilton principle, and eventually, the acquired equations are solved and modeled by the Meshless approach as well as a computer simulation via intelligent mathematical methodology. The attained results are helpful to dissect the stability of the MEMS and NEMS.

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

Semi-analytical stability behavior of composite concrete structures via modified non-classical theories

  • Luxin He;Mostafa Habibi;Majid Khorami
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.187-210
    • /
    • 2024
  • Cantilever structures demonstrate diverse nonlocal effects, resulting in either stiffness hardening or dynamic softening behaviors, as various studies have indicated. This research delves into the free and forced vibration analysis of rotating nanoscale cylindrical beams and tubes under external dynamic stress, aiming to thoroughly explore the nonlocal impact from both angles. Utilizing Euler-Bernoulli and Reddy beam theories, in conjunction with higher-order tube theory and Hamilton's principle, nonlocal governing equations are derived with precise boundary conditions for both local and nonlocal behaviors. The study specifically examines two-dimensional functionally graded materials (2D-FGM), characterized by axially functionally graded (AFG) and radial porosity distributions. The resulting partial differential equations are solved using the generalized differential quadrature element method (GDQEM) and Newmark-beta procedures to acquire time-dependent results. This investigation underscores the significant influence of boundary conditions when nonlocal forces act on cantilever structures.

A Study on the Prediction of Teeth Deformation of the Automobile Transmission Part(Shaft/Gear) in Warm Shrink Fitting Process (온간압입공정에서 자동차 변속기 단품(축/기어) 치형 변화 예측에 관한 연구)

  • Kim, Ho-Yoon;Choi, Chang-Jin;Bae, Won-Byong;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.54-60
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes of gear profile in both radial and circumferential directions. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the gear profile in both radial and circumferential directions are within the limit tolerances used in the field.

Heat Transfer of Condensation by the Injecting Steam Flow In Tube (관내연기 분무류의 응축열전달)

  • 김시영
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.137-142
    • /
    • 1984
  • An experimental study has been performed on the heat transfer characteristics of condensation by the injecting steam flow in the tube. The comparison between results of experimental data and available data concerning equivalent Reynolds number has studied. As the result, the followings were obtained. 1. The shear stress of the radial direction in the tube when the injecting steam flow was condensed can be written as root($\tau$sub(0)/$\tau$sub(0v))=1+1.46X sub(tt) super(0.20). 2. The effect of the heat transfer in the injecting steam flow was less than the value of equivalent Reynolds number. The reason are the nonuniform fluid film of the axial and radial direction in the tube. 3. The value of N sub(u) by the heat transfer of condensation can be written as N sub(u)=1.08$\times$[{$\rho$ sub(l) d/$\mu$ sub(l)}/{$\delta$+(2.5/P sub(rl)) ln(y sub(i)/$\delta$)}]$\times${$\tau$ sub(0)/ $\rho$ sub(l)} super(1/2).

  • PDF