• Title/Summary/Keyword: Radial Runout

Search Result 22, Processing Time 0.024 seconds

Experimental Study on the Whirling, Tilting and Flying Motion of the FDB Spindle System of a 3.5' HDD (3.5인치 HDD용 FDB스핀들 시스템의 훨링, 플라잉과 틸팅 거동에 관한 연구)

  • Oh, S.H.;Lee, S.H.;Jang, G.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.39-45
    • /
    • 2005
  • This research develops an experimental method to measure the motion of a FDB spindle system with a 3.5' disk by using three capacitance probes fixed on the xyz-micrometers, and it shows that a FDB spindle system has the whirling, flying and tilting motion. It also shows that the whirling, flying and tilting motion converge very quickly to the steady state at the same time when the rotor reaches the steady-state speed. However, they are quite large even at the steady state when they are compared with the 10nm flying height of a magnetic head. For the FDB spindle system used in this experiment, the whirl radius and the peak-to-peak variation of flying height and tilting angle at the steady-state speed of 7,200rpm are 0.675m, 30nm and $5.758\times10^{-3^{\circ}}$, respectively, so that the radial motion of the FDB spindle system exceeds a track pitch of a 3.5' HDD with 90,000 TPI.

A New Approach Increasing the Rotational Accuracy of Ball- Bearing Spindle by Using Proper Bearing Positioning

  • Yegor. A.;Lee, Choon-Man;Chung, Won-Jee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.15-21
    • /
    • 2003
  • In order to improve the quality of a spindle unit it is important to increase its rotational accuracy. The rotational accuracy of a spindle unit can be defined as the stability or immobility of its spindle axis while rotating. Spindle rotation in the rolling bearings causes the disturbing influence, which leads to the oscillation of a rotation axis. The purpose of this study is to investigate the oscillation sources and find a way to decrease the runout without additional expenses. The main source of oscillation is the interaction between rolling bodies and ring races. The first oscillation source was the out-of-shape imperfection of inner bearing ring. The mutual compensation of oscillation by proper rings orientation was proposed, which sometimes allow to decrease the radial runout of spindle rotation axis by approximate 40% down. Also the outer ring harmonics were explored as the second oscillation source. The analysis shows the dependency between the number of rolling bodies and the outer ring race harmonics. The conclusion on the orientation of bearing cages and the bearing rings was made, which makes possible to obtain the optimal variant of their mounting in the spindle unit when the rotational accuracy of the spindle is maximal, and the spindle runout considerably less.

In-Process Cutter Runout Compensation Using Repetitive Learning Control

  • Joon Hwang;Chung, Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.13-18
    • /
    • 2003
  • This paper presents the in-process compensation to control cutter ronout and to improve the machined surface quality. Cutter ronout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by cutter ronout compensation.

Dimensional Accuracies of Cold-Forged Spur Gears (냉간단조 스퍼어기어의 치수정밀도)

  • 이정환;이영선;박종진
    • Transactions of Materials Processing
    • /
    • v.5 no.2
    • /
    • pp.115-121
    • /
    • 1996
  • Recently it is attempted to manufacture gears by various cold forging methods to meet requirements of mass production and uniform qualities. Compared to machined gears cold forged ears reveal higher tooth strength and better surface roughness but they reveal lower geometrical accuracies. Therefore in the present study a series of experiments are performed to investigate relations between geometrical accuracies of dies and billet and those of the final product. The geometrical accuracies of forged gears are considered through functional gear-element tolerances by measuring pitch error profile error lead error radial error tooth thickness and rolling test. Results of the experiments can be summarized as follows: (1) involute spur gears of KS 5(or AGMA7) accuracies can be made,(2) concentricity of die set should be maintained within 0.01mm (3) clearance between the billet and die set should be less than 0.1mm (4) con-centricity and radial runout should be less than 0.08mm and 0.1mm respectively. However it is thought that FEM analysis of elastic/thermal deformations of dies and the billet is necessary for a better understanding of the findings obtained through the present study.

  • PDF

Study on Design of Cone-Shaped Magnetic Bearing Spindle System for High Speed Internal Grinding (고속 내면 연삭기 주축용 원추형 자기베어링 설계 연구)

  • 노승국;경진호;박종권;최언돈;양승준;이재응;김남용;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.79-83
    • /
    • 2001
  • A cone-shaped active magnetic bearing spindle system for high speed internal grinding is designed and tested. The cone-shaped AMB system consists of only 4 couples of magnet, it can be smaller and lighter than conventional radial-axial-type AMB system. In this paper, the cone-shaped electromagnets are designed by magnetic circuit theory, and de-coupled direct feedback PID controller is applied to control the coupled magnetic bearings. The designed cone-shaped AMB spindle system is built and constructed with a digital control system, and tested its stbility and dynamic performances. As the results of the tests, this spindle runs up to 40,000 rpm with about 5 ${\mu}{\textrm}{m}$ of runout, and the AMB system provides high damping ratio eliminating overshoot and resonance speed.

  • PDF

Design of High Precision Spindle System for ferrule Grinding Machine (페룰 가공용 고정밀 주축시스템 개선설계)

  • Pyoun, Y.S.;Park, J.H.;Lee, K.B.;Yokoi, Y.;Yeo, J.W.;Jeong, I.Y.;Ahn, K.J.;Kwak, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1003-1007
    • /
    • 2003
  • In order to improve the international competitiveness of ferrule industry, the core technology of the second stage for ferrule grinding system is under developing. A high speed (10,000RPM) and high precision spindle system(Radial Runout 0.2 micrometer) bearing more cutting torque and force is designed considering the limitation of cost and size, the effect of heat, and various work-piece materials. A CAE software for machine elements and general machine system is used for preliminary evaluation and selection of design parameters. A dedicated program for the analysis of spindle system is used for final evaluation and selection of design parameter. The process how to evaluate and select using such tools are presented.

  • PDF

Improvement of the Accuracy in Cornering Cut Using End Mill (엔드밀의 코너 가공시 가공 정밀도 향상에 관한 연구)

  • Kim, Yong-Hyeon;Go, Seong-Rim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.399-407
    • /
    • 2001
  • The Surface, generated by end milling operation, is deteriorated by tool runout, vibration, friction, tool deflection, etc. Especially in cornering cut, surface accuracy is usually determined by varying cutting forces, which causes tool deflections. Cutting conditions like feed rate is usually kept constant during machining a part, which causes dimensional error in severe cutting. Cornering cut is a typical example of deterioration of surface accuracy when constant feed rate is applied. Therefore it becomes important to develop NC post processor module to determine optimal cutting conditions in various cutting situations. In this paper, cutting force is predicted in cornering cut with flat end mill and feed rate is determined by constraining constantly resultant force. Also some control characteristics of CNC machining center are evaluated.

Development of Automatic Cam Profile Measurement System (자동 측정이 가능한 전용 캠 프로파일 측정 시스템 개발)

  • Jeong, Hwang-Young;Lee, Hyun-Seok;Park, Tae-Min;Shin, Woo-Cheol;Koh, Jun-Bin;Hong, Jun-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.106-112
    • /
    • 2008
  • In this paper, It does the profile measurement of the cam of diesel engine SOHC of the actual object. It uses the measurement of run-out method. This method is that the surface of the object is measured by the sensor when the object rotate, and calculated and displayed by the computer the signal which acquired by sensor. When we acquire the signals, we have two error because of motion and contacting between cam and probe. In this paper, we compensate the motion error while simply liner equation. And we have a solution that we change the figure of probe when we have a contacting error. We compared the data measuring on developed automatic cam profile measuring system with the data measured on CMM.

Analysis and Measurement of a HDD Spindle Motor Runout (컴퓨터 하드 디스크 드라이브 스핀들 모터 런아웃 측정 및 해석)

  • 장건희;김동균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.29-35
    • /
    • 1997
  • This research presented a frequency analysis method to analyze NRRO in a computer hard disk drive. RRO was proved to be the harmonics of rotational frequency. The frequency components of NRRO is the subtraction of the harmonics from TIR in frequency domain, so that NRRO in time domain can be obtained by Fourier inverse transformation of NRRO in frequency domain. This method can make the experiments simple without the index signal indispensable to time domain analysis. This research also shows that NRRO is caused by the defect frequencies of ball bearing. Even though the excitation force of ball bearing is independent of the rotational speed, the amplitude of NRRO is magnified near the resonance frequencies of the spindle motor. NRRO in axial direction is almost twice bigger than that in radial direction, because the spindle motor has smaller stiffness in axial direction.

  • PDF