• Title/Summary/Keyword: Radial Displacement

Search Result 246, Processing Time 0.025 seconds

Analysis of belt behavior for a metal V-belt CVT (금속 V-벨트 CVT의 벨트거동 해석)

  • 김현수;이재신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.557-566
    • /
    • 1991
  • The metal V-belt behavior of a continuously variable transmission was investigated analytically and experimentally. Numerical results showed that nondimensional belt radial displacement increased in the radial inward direction for the driven pulley, while that of the driver pulley increased for the first 90 degrees of the active are and decreased with the increasing torque load. Experimental results for the belt radial displacement were in good agreement with the theoretical results. However, the absolute magnitude of the belt radial displacement was so small that the change in the belt displacement could not be measured in the experimental range except for the inlet region of the driven pulley, where the radial inward displacement was observed due to the effect of bending moment. The speed ratio-axial force relationship derived from the belt behavior analysis also showed god agreement with the experiment.

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

Development of an Measuring System for Pulse Wave Corresponding to Different Radial Artery Diameters Caused by Indentation (요골동맥 직경 변화에 따른 맥파 측정 시스템 개발)

  • Lee, Jeon;Woo, Young-Jae;Jeon, Young-Ju;Lee, Yu-Jung;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2351-2357
    • /
    • 2008
  • Noninvasive radial artery pulse wave has been widely used not only for the pulse wave analysis(PWA) itself but also for assessment of arterial stiffness with estimated aortic pulse wave from peripheral pulse wave. However, it has been found that the deformation of pulse shape can be caused readily by changing measuring position, indentation pressure, and so on. So, in this study, we have developed a system which can measure radial pulse wave and skin displacement simultaneously while the indentation body goes down to occlude subject's radial artery. This system can be divided into a measuring apparatus part, an indentation control hardware part, a data acquisition part and a control and computation part. And, the measuring apparatus consists of an arm-rest, a step motor, an indentation body, a laser displacement sensor(LK-G30, Keyence Co.) and pulse wave sensor. Under load-free condition and radial artery loaded condition, the evaluation of developed system has been performed. From these results, we can conclude: 1) The developed system can control the indentation body quantitatively and the adopted laser displacement sensor shows linear output characteristic even with skin as a reflector. 2) This system can measure the pulse wave and the displacement of indentation body, that is, skin displacement simultaneously at each specific level of indentation body. 3) This system can provide the number of motor steps used to get down the indentation body, the measured skin displacement, the calculated indentation pressure, the calculated pulse pressure and the pulse waveform as well as the information generated by combining these with each others. 4) This system can reveal the relationship between the morphological changes of pulse wave and the estimated displacement of radial artery wall by indentation. Consequently, the developed system can furnish more abundant information on radial artery than previous diagnosis systems based on tonometric measurement. In further study, we expect to setup the standard measuring process and to concrete the algorithm for the estimation of radial artery's diameter and of displacement of radial artery's wall. Furthermore, with well designed clinical studies, we hope to turn out the usefulness of developed system in the field of cardiovascular system evaluation.

Radial displacement of clinical target volume in node negative head and neck cancer

  • Jeon, Wan;Wu, Hong-Gyun;Song, Sang-Hyuk;Kim, Jung-In
    • Radiation Oncology Journal
    • /
    • v.30 no.1
    • /
    • pp.36-42
    • /
    • 2012
  • Purpose: To evaluate the radial displacement of clinical target volume in the patients with node negative head and neck (H&N) cancer and to quantify the relative positional changes compared to that of normal healthy volunteers. Materials and Methods: Three node-negative H&N cancer patients and five healthy volunteers were enrolled in this study. For setup accuracy, neck thermoplastic masks and laser alignment were used in each of the acquired computed tomography (CT) images. Both groups had total three sequential CT images in every two weeks. The lymph node (LN) level of the neck was delineated based on the Radiation Therapy Oncology Group (RTOG) consensus guideline by one physician. We use the second cervical vertebra body as a reference point to match each CT image set. Each of the sequential CT images and delineated neck LN levels were fused with the primary image, then maximal radial displacement was measured at 1.5 cm intervals from skull base (SB) to caudal margin of LN level V, and the volume differences at each node level were quantified. Results: The mean radial displacements were 2.26 (${\pm}1.03$) mm in the control group and 3.05 (${\pm}1.97$) in the H&N cancer patients. There was a statistically significant difference between the groups in terms of the mean radial displacement (p = 0.03). In addition, the mean radial displacement increased with the distance from SB. As for the mean volume differences, there was no statistical significance between the two groups. Conclusion: This study suggests that a more generous radial margin should be applied to the lower part of the neck LN for better clinical target coverage and dose delivery.

A Study on Cogging Torque Reduction of Dual Stator Radial Flux Permanent Magnet Generator Using the Permanent Magnet Displacement Design of Rotor (회전자의 영구자석 위치 이동을 이용한 이중 고정자 RFPM 발전기 코깅토크 저감 연구)

  • Lee, Gyeong-Chan;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.4
    • /
    • pp.49-55
    • /
    • 2014
  • In this paper, we propose the cogging toque reduction technique of the dual stator radial flux permanent magnet generator. The cogging toque is caused by the torque ripple increase and vibration and noise of the generator. And it is important factor determining cut-in speed of the small wind generator. To reduce cogging torque, permanent magnet displacement was studied. And the theory of the permanent magnet displacement was formulated and the cogging torque reduction according to the permanent magnet displacement was confirmed through the finite element method.

Analysis of belt behavior for an automotive V-belt CVT (차량용 V-벨트 CVT의 벨트거동해석)

  • 김현수;최병대
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.30-39
    • /
    • 1990
  • The behavior of a V-belt CVT was investigated both analytically and experimentally. It was found that as the torque load increased, the belt radial displacement increased in inward radial direction for the driven pulley while the radial displacement decreased slightly and increased for the driver pulley. The relative belt displacement for the driver was negligible compared with that of the driven. The experimental results were in good accordance with the theoretical results except for the inlet and exit region of the pulley. The speed ratio-torque load-axial force relationship derived from the belt behavior analysis also showed good agreement with the experiment. It is suggested that the results of this paper can be used as basic design informations of a V-belt CVT.

  • PDF

A Study of the Dynamic Characteristics of a Passenger Radial Tire (승용차용 레이디얼 타이어의 동적 특성에 관한 연구)

  • 김두만;김상욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.724-734
    • /
    • 1986
  • The dynamic characteristics of a passenger radial tire were studied by the analytical method and the experiments. The purpose of this study is to obtain the natural frequencies and the mode shapes of a 2 ply steel belt radial tire fixed on the wheel in order to give datum of the dynamic design of tire. The governing equations are derived with the energy method. The composite toroidal finite elements with three degrees of freedom at each node are defined by specifying geometry, internal displacement functions, strain displacement and stress displacement relationships. In order to verify the capability of the present analysis, the natural frequencies and mode shapes of the passenger radial tire are obtained experimentally by using the multi-channel F.F.T. analyser and compared the numerically obtained values. The results show that the analytically obtained values are in good agreement with the experiment and in addition they are in line with the Pott's experimental results.

Magneto-thermo-elastic response of exponentially graded piezoelectric hollow spheres

  • Allam, M.N.M.;Tantawy, R.;Zenkour, A.M.
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.303-318
    • /
    • 2018
  • This article presents a semi-analytical solution for an exponentially graded piezoelectric hollow sphere. The sphere interacts with electric displacement, elastic deformations, electric potentials, magneto-thermo-elasticity, and hygrothermal influences. The hollow sphere may be standing under both mechanical and electric potentials. Electro-magneto-elastic behavior of magnetic field vector can be described in the hollow sphere. All material, thermal and magnetic properties of hollow sphere are supposed to be graded in radial direction. A semi-analytical technique is improved to deduce all fields in which different boundary conditions for radial stress and electric potential are presented. Numerical examples for radial displacement, radial and hoop stresses, and electric potential are investigated. The influence of many parameters is studied. It is seen that the gradation of all material, thermal and magnetic properties has particular effectiveness in many applications of modern technology.

Radial Vibration of Cylindrical Piezoelectric Transducers (원통형 압전 변환기의 반경방향 진동 특성)

  • 김진오;정형곤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1138-1143
    • /
    • 2001
  • The paper deals with a theoretical study on the radial vibration of cylindrical piezoelectric transducers. The differential equations of piezoelectric radial motion have been derived in terms of the radial displacement and electrical potential. Applying mechanical and electrical boundary conditions has yielded the characteristic equations of natural vibration. Numerical results of the fundamental natural frequency have been compared with experimental observations for the transducers of several sizes, and have shown a good agreement.

  • PDF

A Design on Reduction Cogging Torque of Dual Generator Radial Flux Permanent Magnet Generator for Small Wind Turbine

  • Lee, Gyeong-Chan;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1590-1595
    • /
    • 2013
  • In this paper, the design for an electromagnetic structure and reduction cogging torque of a dual generator structured RFPM generator, which is a combination of the inner- and outer-rotor types, has been proposed. We call this a dual generator radial flux permanent magnet generator. To reduce the cogging torque, firstly, stator tooth pairing was designed; secondly, stator displacement was designed and finally, stator tooth pairing and stator displacement were carried out simultaneously. We found the optimal design condition about stator tooth pairing angle combination and stator displacement angle for cogging torque minimization. As a result, a cogging was reduced by 93.3[%] by this study.