• Title/Summary/Keyword: Radial Combiner

Search Result 13, Processing Time 0.022 seconds

High Power Amplifier using Radial Power Combiner (레디알 전력 결합기를 이용한 고출력 증폭기)

  • Choi, Jong-Un;Yoon, Young-Chul;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.626-632
    • /
    • 2017
  • This paper describes a high power amplifier combining eight low power amplifiers using a radial power combiner with low insertion loss. The radial power combiner is a non-resonant type combiner with 8 input ports and is implemented by microstrip transmission line. The combiner characteristics designed at operating frequency of 1.045 GHz have an insertion loss of 0.7 dB and a return loss of more than 12 dB. Also, the low power amplifier used was designed with AFT27S010NT1 transistor and designed to satisfy the same gain, phase and constant output characteristic at operating frequency. The high power amplifier, which combiners the radial power combiner and the drive amplifier of 8 W output by driving low power amplifiers obtained the output characteristic of 33 W at operating frequency of 1.045 GHz. Also, the change of the output characteristic of the amplifier using the radial combiner was graceful degradation when the low power amplifier failed one by one.

A Study on a Ku-Band High Power and High Efficiency Radial Combiner (Ku 대역 고출력 고효율 Radial Combiner에 대한 연구)

  • Yun, Song-Hyun;Kim, Si-Ok;Lee, Su Hyun;Lim, Byeong-Ok;Lee, Bok-Hyung;Jeon, Yong-Kyu;Kim, Hyun-Kyu;Yoo, Young-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.400-409
    • /
    • 2017
  • We have studied a combiner that can withstand high power while minimizing insertion loss in high frequency band. In particularly, because the output power that can be output per unit elements is much lower in the Ku band and above than in the low frequency band, it is necessary to combine many semiconductor elements in order to make a high power SSPA. A planar combiner such as a microstrip, as the number of elements to be combined increases, the insertion loss increases proportionally, resulting in a reduction in the overall system efficiency and an increase heating value also. The planar combiner also have some problems due to the low power handling rate. To improve these problems, we proposed a Cavity Radial Combiner. A Ku band 16-way Cavity Radial Combiner was fabricated and measured. As a result, it was tested 14dB return loss and over 94.5 % output combining efficiency in design band.

The design of a microwave radial power combiner (마이크로웨이브 방사형 전력 결합기 설계)

  • 임재욱;강원태;이상호;장익수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.8
    • /
    • pp.1-7
    • /
    • 1997
  • In ahigh power amplifier design, power combiner/divider is used to connect low power amplifiers in parallel. The raidal structure of the powe combiner/divider has not only a good characteristics of port-to-port isolation but also an advantage of giving a redundancy to the structure itself by using RF switches. The parastics of a power resistor, that would be a problem in design process, are removed by both slot lines and cavity resonators, and the comon node in the circuit is rdesigned as a planar topology, and thus a new type of 4-way radial power combiner/divider is accomplished at 1840 ~ 1870 MH PCS frequency band. The insertion loss, reflection, and isolation characteristics of 40way radial power combiner/divider which can be adaptable to PCS system in this thesis are -0.3dB, -24dB,a dn -27dB respectively.

  • PDF

Design of a Broadband Microwave Power Divider/Combiner using Coaxial-Conical-Radial Transmission Line Conversion (동축-원추-방사형 선로변환에 의한 마이크로파 전력분할/합성기의 광대역 설계)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1385-1390
    • /
    • 2011
  • A coaxial-conical-radial transmission line conversion circuits have been investigated to realize a low loss high performance microwave power divider/combiner. In order to optimize the characteristics of the device, the power divider/combiner was designed separately with two parts-the inner part and the outer part. Utilizing the rectangular approximation of the outer part, we can design the low loss device which is not affected by the partition number N of the outer part. The small return loss which is lower than 20dB was obtained on the frequency range of 5.15GHz(7.45~12.60GHz). A conical connector was employed for smooth connection between the central coaxial line and the outer radial line. Making use of the $47^{\circ}$ and $90^{\circ}$ 2-stage conical connector, the return loss lower than 30dB was obtained on the operating frequency range of 5GHz. The total return loss of the designed divider/combiner was lower than 20dB on the frequency range of 5GHz for the partition number N=11, N=12 and N=16.

On the Optimization of the Coaxial-Conical-Radial Type Power Divider/Combiner and the Improvement of Isolation Characteristics (동축-원추-방사형 전력분할/합성기의 중심부 높이에 따른 최적설계와 아이솔레이션 특성 향상)

  • Choi, Young-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1727-1732
    • /
    • 2011
  • In order to realize a high performance(low loss, high isolation) microwave power divider/combiner, we have designed the power combiner/divider precisely in accordance with the different hight of central part. In the case of the high central part of the hight of $h_r$=10.2, a compensating part of the conical line is inserted in the conical conversion transmission line, and in the case of low central part of the hight of $h_r$=5.0, the conical conversion transmission line is remodeled into the 2-stage bend structure. In both case, the reflection characteristics are improved to 30dB over the operating frequency range of 5GHz bandwidth. A resistance is inserted between the peripheral ports so as to try to improve the isolation characteristics of the device. For the 16-divider/combiner, the isolation characteristics are improved to 10dB over the operating frequency range of 5GHz bandwidth.

Design and fabrication of a 12-way radial combiner with a miniaturized dual waveguide to coaxial transition structure (소형화가 가능한 이중 도파관-동축 변환 구조를 갖는 12-way 방사형 결합기 설계 및 제작)

  • Su Hyun Lee;Byung Joo Kang;Hyo Sang Moon;Nam Woo Choi;Hoon Ki Yang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.145-155
    • /
    • 2023
  • A radial combiner with high efficiency characteristics in the X-band was designed and manufactured using a waveguide and matching structure. In particular, in order to manufacture it in a small size, a dual waveguide to coaxial transition structure was applied that allows two ports to be matched to one waveguide. Applying this structure makes it possible to manufacture smaller than typical coaxial to waveguide radial combiner. As a result of measurement in the X-band band of 9.2~10GHz, the return loss was less than -18.408dB and the output insertion loss was less than 0.206dB, and the output combining efficiency was obtained as high as 95.37% or more. It is expected that it can be used in the combining part for high output transmitters in the millimeter wave band in the future. In particular, the range of use is expected to increase by reducing the size and weight.

Design of TE10 to TEM mode convertor for W-band radial power combiner (W밴드 radial 전력 결합기용 TE10-TEM 모드 변환기 설계)

  • Young-Gon Kim;Myung-Hun Yong;Han-Chun Ryu;Se-Hoon Kwon;Seon-Keol Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.41-46
    • /
    • 2023
  • Design of W-band TE10 to TEM mode converter for radial power combiner is proposed in this paper. The proposed structure is used with generally available pin to realize TEM mode and is designed to convert TE10 to TEM mode gradually using 2-step impedance transformer and back short. The pin of proposed mode converter is well bonded to the housing so that environment conditions such as vibration or shock are not affected. The proposed mode converter, in a back-to-back configuration, has less than 1.55 dB insertion loss and more than 10 dB return loss from 92.5 GHz to 97.7 GHz. Proposed converter is expected compact radar and various applications requiring for high power and stable environment conditions.

Development of the Ka-band 20watt SSPA (Solid State Power Amplifier) Using a Spatial Combiner (공간결합기를 이용한 Ka대역 20W급 SSPA 개발)

  • Choi, Young-Rak;Lee, Jong-Woo;Lee, Su-Hyun;An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.231-238
    • /
    • 2019
  • In this paper, we have studied how to improve the amplifiers efficiency by minimizing the combining loss when several unit power amplifiers are combined to obtain high output power. Specifically, we have developed Ka-band Spatial Combining Amplifier. The fabricated Spatial Combining Amplifier is a Ka-band 20W class SSPA, which uses a 5W class unit amplifier module 8EA designed using a GaN bare die. We also combined The unit amplifier module using 8-way spatial divider and combiner with a hybrid radial structure. The output combining loss of the fabricated spatial coupler is about 0.334dB, which is about 92.6% efficiency. In this paper, we developed a Spatial Combining Amplifier with a maximum saturation output of 10W and a power addition efficiency of over 15%. As a result, we achieved the maximum saturation output of 30W and the power addition efficiency of 19%.

Implementation of a High Power Amplifier using Low Loss Radial Power Combiner and Water Cooling System (저 손실 레디알 전력 결합기와 수냉 시스템을 이용한 고전력 증폭기 구현)

  • Choi, Sung-Wook;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.319-324
    • /
    • 2018
  • In this paper, a high power amplifier using RF power solid-state semiconductor is implemented to overcome a problem of plasma generator which has the low efficiency, short life span, the difficult maintenance and the high-operation cost. This power amplifier consists of a radial combiner of low-loss and high power operation and the sixteen 300 W power amplifiers to obtain 3 kW output power for high power operation implemented in semiconductors at industrial scientific medical (ISM) band of 2.45 GHz. In addition, this amplifier overcomes the problem of heat generation due to high power by applying a water-cooled structure to the individual amplifiers. This power amplifier, which is made up of a small system, achieves 50% efficiency at the desired output.

Design and fabrication of Ka-band high power and high efficiency waveguide spatial combiner (Ka 대역 고출력 고효율 도파관 공간 결합기 설계 및 제작)

  • Kim, Hyo-Chul;Cho, Heung-Rae;Lee, Ju-Heun;Lee, Deok-Jae;An, Se-Hwan;Lee, Man-Hee;Joo, Ji-Han;Kim, Hong-Rak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.19-26
    • /
    • 2021
  • This report proposes a waveguide spatial combiner with high power low loss. The proposed spatial combiner implements high power by combining from the center of each port through a waveguide. In particular, we implement low loss using TE01 mode, which has the lowest transmission track loss among modes of circular waveguide, and miniaturization is achieved by applying a new mode conversion method. IIn addition, it was confirmed that it was suitable for high output by calculating the insulation breakdown voltage of the new mode conversion structure through E-field analysis. The final 8-way waveguide spatial combiner was designed and manufactured, and the insertion loss was less than 0.4dB and the combining efficiency was 97% or more, confirming that the electrical performance was very good compared to the planar combining method.