• Title/Summary/Keyword: Radars

Search Result 299, Processing Time 0.026 seconds

Merging Radar Rainfalls of Single and Dual-polarization Radar to Improve the Accuracy of Quantitative Precipitation Estimation (정량적 강우강도 정확도 향상을 위한 단일편파와 이중편파레이더 강수량 합성)

  • Lee, Jae-Kyoung;Kim, Ji-Hyeon;Park, Hye-Sook;Suk, Mi-Kyung
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.365-378
    • /
    • 2014
  • The limits of S-band dual-polarization radars in Korea are not reflected on the recent weather forecasts of Korea Meteorological Administration and furthermore, they are only utilized for rainfall estimations and hydrometeor classification researches. Therefore, this study applied four merging methods [SA (Simple Average), WA (Weighted Average), SSE (Sum of Squared Error), TV (Time-varying mergence)] to the QPE (Quantitative Precipitation Estimation) model [called RAR (Radar-AWS Rainfall) calculation system] using single-polarization radars and S-band dual-polarization radar in order to improve the accuracy of the rainfall estimation of the RAR calculation system. As a result, the merging results of the WA and SSE methods, which are assigned different weights due to the accuracy of the individual model, performed better than the popular merging method, the SA (Simple Average) method. In particular, the results of TVWA (Time-Varying WA) and TVSSE (Time-Varying SSE), which were weighted differently due to the time-varying model error and standard deviation, were superior to the WA and SSE. Among of all the merging methods, the accuracy of the TVWA merging results showed the best performance. Therefore, merging the rainfalls from the RAR calculation system and S-band dual-polarization radar using the merging method proposed by this study enables to improve the accuracy of the quantitative rainfall estimation of the RAR calculation system. Moreover, this study is worthy of the fundamental research on the active utilization of dual-polarization radar for weather forecasts.

An Analysis on Short-Range-Radar Characteristic for Developing Object Detecting System (물체탐지 시스템의 개발을 위한 근거리 레이더에 대한 특성 분석)

  • Park, Dong-Jin;Ryu, In-Hwan;Byun, Ki-Hoon;Lee, Sang-Min;Kwon, Jang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1267-1279
    • /
    • 2014
  • In this paper, we suggest the development of object detection systems for the safety of the ship through the study of the properties of short-range radar. Many of the short-range radars developed for special purpose like cars has cheaper price advantages but it is not proper to every application. In order to overcome such obstacles we need to analysis data from experiments in various environments and feature analysis of the device is essential. Also, the data clustering algorithms to display correct classified moving objects is necessary. In this paper we propose the advanced fast moving object detection system using short range radars with better detection accuracy. And we proposed a clustering algorithm using the value of the RCS and the speed and trajectory information of the radar data that are reflected.

Hand Gesture Classification Using Multiple Doppler Radar and Machine Learning (다중 도플러 레이다와 머신러닝을 이용한 손동작 인식)

  • Baik, Kyung-Jin;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • This paper suggests a hand gesture recognition technology to control smart devices using multiple Doppler radars and a support vector machine(SVM), which is one of the machine learning algorithms. Whereas single Doppler radar can recognize only simple hand gestures, multiple Doppler radar can recognize various and complex hand gestures by using various Doppler patterns as a function of time and each device. In addition, machine learning technology can enhance recognition accuracy. In order to determine the feasibility of the suggested technology, we implemented a test-bed using two Doppler radars, NI DAQ USB-6008, and MATLAB. Using this test-bed, we can successfully classify four hand gestures, which are Push, Pull, Right Slide, and Left Slide. Applying SVM machine learning algorithm, it was confirmed the high accuracy of the hand gesture recognition.

A Study on Accurate Angle Estimation of Multiple Targets for Digital Beam Forming Automotive Radar (DBF 차량용 레이더를 위한 다중 표적의 정확한 각도 추정 연구)

  • Lee, Seong-Hyeon;Choi, In-Oh;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.806-813
    • /
    • 2015
  • In order to satisfy several conditions with respect to size, weight, and costs, automotive radars use an antenna consisting of a small number of receiving channels. If RELAX technique is applied to the automotive radars, angles of targets located in antenna beam can be estimated as well as the number of the targets. However, a small number of receiving channels in the antenna leads to inaccurate spectral estimation in angle domain, which in turn degrades performance of RELAX technique. Therefore, in this study, root-MUSIC technique coupled with MDL criterion is introduced to decide accurate angles of targets in antenna beam. In simulations, we show superior performance of proposed scheme using simulation results when three point targets are located in antenna beam.

Characteristics of the Polar Ionosphere Based on the Chatanika and Sondrestrom Incoherent Scatter Radars

  • Kwak, Young-Sil;Ahn, Byung-Ho
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.489-499
    • /
    • 2004
  • The climatological characteristics of the polar ionospheric currents obtained from the simultaneous observations of the ionospheric electric field and conductivity are examined. For this purpose, 43 and 109 days of measurements from the Chatanika and Sondrestrom incoherent scatter radars are utilized respectively. The ionospheric current density is compared with the corresponding ground magnetic disturbance. Several interesting characteristics about the polar ionosphere are apparent from this study: (1) The sun determines largely the conductance over the Sondrestrom radar, while the nighttime conductance distribution over the Chatanika radar is significantly affected by auroral precipitation. (2) The regions of the maximum N-S electric field over the Chatanika radar are located approximately at the dawn and dusk sectors, while they tend to shift towards dayside over the Sondrestrom radar. The N-S component over Son-drestrom is slightly stronger than Chatanika. However, the E-W component over Chatanika is negligible compared to that of Sondrestrom. (3) The E-W ionospheric current flows dominantly in the night hemisphere over Chatanika, while it flows in the sunlit hemisphere over Sondrestrom. The N-S current over Chatanika flows prominently in the dawn and dusk sectors, while a strong southward current flows in the prenoon sector over Sondrestrom. (4) The assumption of infinite sheet current approximation is far from realistic, underestimating the current density by a factor of 2 or more. It is particularly serious for the higher latitude region. (5) The correlation between ${\Delta}H\;and\;J_E$ is higher than the one between ${\Delta}D\;and\;J_N$, indicating that field-aligned current affects ${\Delta}D$significantly.

A Study on the effect of electromagnetic interference in adjacent antenna apertures of multi-function radar for Integrated MAST (통합마스트용 다기능위상배열 레이다의 인접 안테나 개구면 전자파 간섭 영향성 연구)

  • Jung, Chae-Hyun;Ryu, Seong-Hyun;Lee, Hang-Soo;Han, Jae-Sub;Kim, Young-Wan;Kang, Yeon-Duk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.117-122
    • /
    • 2020
  • In this paper, we study the electromagnetic interference in adjacent antenna aperture of multi-function radar for Integrated MAST of naval ship, which is operating plural radars, with test result of two different X-band antennas. Two antennas is placed in the test fixture copying the part of Integrated MAST for the experiment. The test figure is modeled to see the electromagnetic interference when antenna beam is steered by using electromagnetic analysis tool. Also, 6 test scenarios is determined to verify experimentally and each test scenario is run in an anechoic chamber. At the test antenna #1 radiates a pulse signal and the signal from the antenna #2 is stored and analyzed in the optic data format through a receiving device. Based on the result, the effect of electromagnetic interference is suggested when multi-function radars in the Integrated MAST are operating in adjacent distance.

Design and Implementation of Flying-object Tracking Management System by using Radar Data (레이더 자료를 이용한 항적추적관리시스템 설계 및 구현)

  • Lee Moo-Eun;Ryu Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.175-182
    • /
    • 2006
  • Radars are used to detect the motion of the low flying enemy planes in the military. Radar-detected raw data are first processed and then inserted into the ground tactical C4I system. Next, these data we analyzed and broadcasted to the Shooter system in real time. But the accuracy of information and time spent on the displaying and graphical computation are dependent on the operator's capability. In this paper, we propose the Flying Object Tracking Management System that allows the displaying of the objects' trails in real time by using data received from the radars. We apply the coordinate system translation algorithm, existing communication protocol improvements with communication equipment, and signal and information computation process. Especially, radar signal duplication computation and synchronization algorithm is developed to display the objects' coordinates and thus we can improve the Tactical Air control system's reliability, efficiency, and easy-of-usage.

Optimum Missile Attitude to Minimize Radar Exposure at a High Altitude (고고도에서의 피탐성 최소화 유도탄 최적자세 연구)

  • Moon, Kyujin;Jeong, Ui-Taek;Kim, JeongHun;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.865-873
    • /
    • 2019
  • To improve the survivability of a missile, it needs to be lowered that the detection possibility by radars on the ground. The radar exposure of the target is given as a function of relative distance from the radar to the target and RCS (Radar Cross Section). The RCS of the missile is determined by the incidence angle of the target to electromagnetic radiation emitted from the radar. Under the assumption that the missile equips appropriate attitude control system, the attitude of the missile to minimize radar exposure at a high altitude is investigated in this paper. Two different types of performance cost are considered: the total sum of RCS and the total sum of SNR during the flight. Optimal solutions against multiple ground radars are found by using a SQP (Sequential Quadratic Programming)-based optimization technique.

A Reconfigurable Multiband FMCW Radar for Multipurpose Application (다목적활용을 위한 재구성이 가능한 다중대역 FMCW 레이다)

  • Kim, Byungjoon;Koo, Jong-seop;Kim, Duksoo;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.12
    • /
    • pp.1112-1115
    • /
    • 2015
  • Recently, there have been advancements in radar related material technology, circuit design techniques and architecture design techniques. These have led to developments in radars' performance while decreasing the costs. Many studies have been carried out to apply radars to multipurpose application. In this study, a reconfigurable S-/X- band radar structure for multipurpose application is proposed and implemented. This radar measures a $51.2cm{\times}50.6cm$ target for 10 times from 2 m to 6 m range with 0.25 m distance step. The measured results show that this radar has 26.40 cm maximum range error, 5.63 cm average range error, and 0.24 cm range error variance at S-band while it has 8.53 cm maximum range error, 2.52 cm average range error, and 0.04 cm range error variance at X-band.

A Study on Design and Fabrication of mm-Wave EM Absorber (밀리미터파 대역 전파흡수체의 설계 및 제작에 관한 연구)

  • Kim, Dae-Hun;Choi, Chang-Mook;Choi, Dong-Su;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.161-166
    • /
    • 2010
  • The bandwidth of detecting radars used for military purpose is increasingly broadened, and recently, the frequency band of the detecting radars is expanding to millimeterwave bands of the millimeterwave bands of 35 GHz and 94 GHz. Since, especially, it is essential and important to fabricate and develop EM wave absorber with the absorption ability more than 10 dB in 94 GHz band, the EM wave absorber was manufactured based on the design method by FDTD simulation. As a result, the developed EM wave absorber with the composition ratio of Binder(CPE with additional materials) : Carbon = 70 : 30 wt.% has the thickness of 0.7 mm and the absorption ability more than 14 dB in the frequency range of 94 GHz.