DOI QR코드

DOI QR Code

Optimum Missile Attitude to Minimize Radar Exposure at a High Altitude

고고도에서의 피탐성 최소화 유도탄 최적자세 연구

  • Received : 2019.08.29
  • Accepted : 2019.10.29
  • Published : 2019.12.01

Abstract

To improve the survivability of a missile, it needs to be lowered that the detection possibility by radars on the ground. The radar exposure of the target is given as a function of relative distance from the radar to the target and RCS (Radar Cross Section). The RCS of the missile is determined by the incidence angle of the target to electromagnetic radiation emitted from the radar. Under the assumption that the missile equips appropriate attitude control system, the attitude of the missile to minimize radar exposure at a high altitude is investigated in this paper. Two different types of performance cost are considered: the total sum of RCS and the total sum of SNR during the flight. Optimal solutions against multiple ground radars are found by using a SQP (Sequential Quadratic Programming)-based optimization technique.

유도탄의 생존율을 향상시키기 위해서는 레이더에 의한 피탐성을 낮춰야 하는데 이는 레이더 반사 면적과 레이더에서 목표까지의 상대 거리의 함수로 주어진다. 또한 유도탄의 레이더 반사 면적은 레이더에서 방출되는 전자기파에 대한 목표물의 입사각에 의해 결정된다. 본 논문에서는 유도탄이 적절한 자세 제어 시스템을 갖추고 있다는 가정 하에 고고도에서 레이더에 의한 피탐성을 최소화하기 위한 유도탄의 자세를 조사한다. 레이더 반사 면적의 총합과 신호 대 잡음 비의 총합, 두 가지 다른 유형의 성능 비용을 고려한다. SQP 기법을 이용하여 단일 레이더 및 다수의 레이더에 대한 최적해를 산출한다.

Keywords

References

  1. Ahn, J. J., and Yoon, S. J., "A Study on the UAV Guidance and Control Minimizing Rader Exposure," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2003, pp. 1285-1288.
  2. Keller, J. B., "Backscattering from a Finite Cone," IEEE Transactions on Antennas and Propagation, Vol. 8, No. 2, 1960, pp. 175-182. https://doi.org/10.1109/TAP.1960.1144832
  3. Bechtel, M. E., "Application of Geometric Diffraction Theory to Scattering from Cones and Disks," Proceedings of the IEEE, Vol. 53, No. 8, 1965, pp. 877-882. https://doi.org/10.1109/PROC.1965.4066
  4. Lee, S. H., Investigation of the Effects of Target Feature Variations on Basslistic Missile RCS, Air Force Institute of Technology, Thesis, 2006.
  5. Lee, K. H., Kwon, Y. S., and Kim, J. W., "A Study on the Analysis of the RCS Characeristics for Aegis BMD," Proceeding of The 7th National Defense Technology Conference, July 2011, pp. 92-102.
  6. Lawrence, C., Zhou, K. L., and Tits, A. L., User's Guide for CFSQP Version 2.5: A C Code for Solving (Large Scale) Constrained Nonlinear (Minmax) Optimization Problems, Generating Iterates Satisfying A Inequality Constraints, Institute for Systems Research, University of Maryland, 1997.
  7. Park, T. Y., and Lim, J. S., "RCS of Ballistic Missile Based on Radar Position," The Journal of Korean Institute of Communications and Information Science, Vol. 40, No. 1, 2015, pp. 209-216. https://doi.org/10.7840/kics.2015.40.1.209
  8. Kim, H. T., "Technique for Prediction and Measurement about RCS of Military Target," Proceeding of The Korea Electromagnetic Engineering Society, October 2000, pp. 16-25.