• Title/Summary/Keyword: Radar vehicle detector

Search Result 21, Processing Time 0.024 seconds

Development of A Multi-sensor Fusion-based Traffic Information Acquisition System with Robust to Environmental Changes using Mono Camera, Radar and Infrared Range Finder (환경변화에 강인한 단안카메라 레이더 적외선거리계 센서 융합 기반 교통정보 수집 시스템 개발)

  • Byun, Ki-hoon;Kim, Se-jin;Kwon, Jang-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.36-54
    • /
    • 2017
  • The purpose of this paper is to develop a multi-sensor fusion-based traffic information acquisition system with robust to environmental changes. it combines the characteristics of each sensor and is more robust to the environmental changes than the video detector. Moreover, it is not affected by the time of day and night, and has less maintenance cost than the inductive-loop traffic detector. This is accomplished by synthesizing object tracking informations based on a radar, vehicle classification informations based on a video detector and reliable object detections of a infrared range finder. To prove the effectiveness of the proposed system, I conducted experiments for 6 hours over 5 days of the daytime and early evening on the pedestrian - accessible road. According to the experimental results, it has 88.7% classification accuracy and 95.5% vehicle detection rate. If the parameters of this system is optimized to adapt to the experimental environment changes, it is expected that it will contribute to the advancement of ITS.

A Design of a VCO for an Advance Warning System of the Vehicle′s Speed Limitation (차량 속도 제한 사전 경보기용 전압 제어 발진기 설꼐)

  • 김동현;최익권
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1075-1081
    • /
    • 2004
  • In this paper, a VCO of a general advance warning system for vehicle's speed limitation in the X-band used in Japan is designed using a small signal scattering coefficient of PHEMT. A varactor diode that wide tuning range and series resistance 0 H is used for designing the VCO and -85 dBc/Hz of phase noise at 10 kHz of offset frequency is obtained by adjusting the reflection coefficient between the micro-strip line and the varactor device which determines transistor's operation voltage and resonant frequency, In addition +4.5 dBm of basic frequency signal output level and -25.6 dEc of the second harmonic constraint are acquired. Sample that produce in this paper could confirm that more excellent special quality appears than existing products in sensitivity.

Realization of Unified Protocol of Multi-functional Controller for Transfer of Vehicle Information on the Roads (차량 검지정보 전송을 위한 다기능 제어기 통합 프로토콜 구현)

  • Ahn, Seung-Yong;Lim, Sung-Kyu;Lee, Seung-Yo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1857-1863
    • /
    • 2012
  • The VDS(Vehicle Detection System) collects and transfers information about traffic situations in real time, therefore it makes the traffic management effective. Recently, the VDSs have provided good stability and accuracy in regard to system reliability and functions but they also have showed problems such as raising costs and consuming times when a new system is installed and/or the environmental requirements for the system are set up. The reason of the problems is that up to now the collection of the data and information about the traffic situations has been achieved by the 1:1 information exchange between the traffic control surveillance center and the each traffic field, between equipments and centers, and among data processing equipments and also centers. The communication systems used in the VDS are generally composed of 1 : 1 connection of the lines because the communication protocols are different in the most of the cases mentioned above. Consequently, this makes the number of communication lines become larger and causes the cost for the whole traffic information systems to increase. In this paper, a development of a controller to unify the communication protocols for the VDS is peformed to solve the problems which were mentioned above. Specially, the controller developed in this paper was applied to a radar vehicle detector and tested to show its usefulness. In addition to that, the developed controller was also designed to include functions to transfer the information about weather conditions on the roads.

Case Studies of Safety Diagnosis by GPR (GPR에 의한 안전진단 사례)

  • 한자경;최광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.12a
    • /
    • pp.169-180
    • /
    • 1999
  • Ground penetrating radar(GPR) uses radio waves to detect buried objects in any non-metallic material. Initially it was used to detect structures in ice. GPR has evolved to include the penetration of soils, rocks and man-made structures. GPR uses a sensitive detector to record weak radio waves reflected from objects embedded in the material under investigation. In this study, the GPR is applied to outside plant telecommunication facilities such as cable tunnels, manholes and underground conduits and model experiments to obtain radar characteristics. The thickness and soundness of tunnel lining can be evaluated, and the location of rebars and steel ribs can also be found effectively. The location of underground conduits as well as manholes can be found and the results of GPR give good coincidence with design drawings. In order to investigate the tunnel lining, the GPR mounted vehicle is developed and it is proved that the vehicle can save time and manpower.

  • PDF

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

GPR Development for Landmine Detection (지뢰탐지를 위한 GPR 시스템의 개발)

  • Sato, Motoyuki;Fujiwara, Jun;Feng, Xuan;Zhou, Zheng-Shu;Kobayashi, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.270-279
    • /
    • 2005
  • Under the research project supported by Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), we have conducted the development of GPR systems for landmine detection. Until 2005, we have finished development of two prototype GPR systems, namely ALIS (Advanced Landmine Imaging System) and SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar). ALIS is a novel landmine detection sensor system combined with a metal detector and GPR. This is a hand-held equipment, which has a sensor position tracking system, and can visualize the sensor output in real time. In order to achieve the sensor tracking system, ALIS needs only one CCD camera attached on the sensor handle. The CCD image is superimposed with the GPR and metal detector signal, and the detection and identification of buried targets is quite easy and reliable. Field evaluation test of ALIS was conducted in December 2004 in Afghanistan, and we demonstrated that it can detect buried antipersonnel landmines, and can also discriminate metal fragments from landmines. SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar) is a machine mounted sensor system composed of B GPR and a metal detector. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. SAR-GPR combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30 cm, composed from six Vivaldi antennas and three vector network analyzers. The weight of the system is 17 kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan.

A Study on Mine Detection System with Automatic Height Control (높이 자동제어가 가능한 차량 장착형 지뢰탐지장치에 대한 연구)

  • Kang, Sin Cheon;Chung, Hoe Young;Jung, Dae Yon;Sung, Gi Yeul;Kim, Do Jong;Kim, Ji Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.558-565
    • /
    • 2017
  • The vehicle-mounted mine detection system with large detection sensor modules can search wide areas with a fast detection speed. To mount the heavy mine detectors on a manned or unmanned vehicle, it is necessary to design the detector driving mechanism and control system based on the considerations driven from the characteristic analysis and the operation requirements of the detection system. Furthermore, while operating the mine detector mounted on a mobile vehicle, it is significant to keep the height from the ground to sensors within a certain distance in order to get a qualified detection performance. As the mine detection sensor, we used ground penetrating radar widely used to geotechnical exploration, mine detection and etc. In this paper, we introduce a driving mechanism through analyzing the characteristics of the vehicle-mounted mine detection system. We also suggest a method to automatically control the distance between the ground and GPR by utilizing the GPR output values, used to detect mines at the same time.

Comparison of the Methodologies for Calculating Expressway Space Mean Speed Using Vehicular Trajectory Information from a Radar Detector (레이더검지기의 차량 궤적 정보를 이용한 고속도로 공간평균속도 산출방법 비교)

  • Han, Eum;Kim, Sang Beom;Rho, Jeong Hyun;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.34-44
    • /
    • 2016
  • This study was initiated to evaluate the performance of methodologies to estimate the space mean speed(SMS) using the time mean speed(TMS) which was collected from the vehicle detection system(VDS) in expressways. To this end, the methodologies presented in prior studies were firstly summarized. It is very hard to achieve exact SMSs and TMSs due to mechanical and communication errors in the field. Thus, a microscopic traffic simulation model was utilized to evaluated the performance. As a result, the harmonic mean and volume-distance weighted harmonic mean were close to the SMS in the case in which the TMSs of individual vehicles were used. However, when the 30-second-interval aggregated TMS were used, the volume-distance weighted harmonic mean was outstanding. In this study, a radar detector was installed in the Joongbu expressway to collect the SMS. The trajectory of individual vehicles collected from the detector were used to calculate the SMS, which was compared with the estimates using other methodologies selected in this study. As a result, the volume-distance weighted mean was turned out to be close to the SMS. However, as the congestion becomes severe. the deviation between the two speed becomes bigger.

Development of a Controller with Multi-function for the Vehicle Detector Using Radar (레이더 차량 검지기를 위한 다기능 제어기 개발)

  • Lim, Sung-Kyu;Ahn, Seung-Yong;Lee, Seung-Yo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1242-1243
    • /
    • 2011
  • 차량 검지 시스템은 실시간으로 교통상황 자료를 수집하는 시스템으로, 관리대상 구간의 자료를 수집하여 시시각각 변하는 교통상황에 대한 효과적인 교통관리를 수행하도록 한다. 현재 차량 검지 시스템은 상당한 안정성과 정확성을 확보 하고 있기는 하나, 시스템 구성시 검지 시스템 자체의 구성에 드는 비용과 시간 보다는 센터와의 통신에 필요한 시스템 구축이나 전원 확보를 위한 전원선 공사등과 같은 주변 환경 요건 구축에 더욱 많은 비용과 시간이 드는 문제점이 있다. 이는 정보수집의 방식이 현재까지는 센터와 1:1 연결을 통한 정보교환에 의한 것이어서 전국단위의 N개 총신회선의 정보교환을 위해서는 1:N개의 통신회선이 필요하기 때문이다. 따라서 본 논문에서는 이러한 문제점 해결을 위한 레이더 차량 검지 시스템용 통합 프로토콜 제어기의 개발을 수행한다.

  • PDF

A Study on a Traffic Signal Operation system using complex Sensor (복합 센서를 이용한 교통 신호운영체계에 관한 연구)

  • Hwang, Gui-Youn;Jeong, Yang-Kwon;Choi, Hyung-Ju;Hui, Xue-Wu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.10
    • /
    • pp.1573-1580
    • /
    • 2013
  • This study is proposed traffic signal operating system to find existing problems of loop system and complex with doplar system, which have strong linearity, resistence of weather effects and wide range to improve delay problems that used in vehicle detection method. This proposed method have simulated on Southern-Gwangju station to Enter of SeoChang take about 10km by using VISSIM tool and we found this proposed method is 15% through(또는 to) 30% more effective than continuous progress interlocking system or crossing progress interlocking system.