• Title/Summary/Keyword: Radar Target Simulator

Search Result 33, Processing Time 0.023 seconds

A Study on the Methods to Simulate the Target Reflective Signal in a Wideband Radar (광대역 레이더의 표적 반사 신호 모의 방법에 관한 연구)

  • Kim, EunHee;Kim, TaeHyung;Kim, Sun-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.179-188
    • /
    • 2015
  • Testing a radar system in real environment requires a lot of time and cost. Thus various target simulators are developed to evaluate the radar performance and its functions as well. In order to enhance the range resolution and the accuracy for tracking, recent radar system tends to use the wideband signal. In this paper, we summarize two target simulation methods - the direct sampling method with the digital memories and the beat frequency generation for the stretch processing - and suggest the condition to improve their performance for a wideband radar system.

Development of Acquisition and Analysis System of Radar Information for Small Inshore and Coastal Fishing Vessels - Position Tracking and Real-Time Monitoring- (연근해 소형 어선의 레이더 정보 수록 및 해석 시스템 개발 -위치 추적 및 실시간 모니터링 -)

  • 이대재;김광식;신형일;변덕수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.337-346
    • /
    • 2003
  • This paper describes on the system and method for automatically tracking and real-time monitoring the position of target ships relative to the own ship using a PC based radar system that displays radar images and electronic charts together on a single PC screen. This system includes a simulator for generating the GGA and VTG information of target ships and a simulator for generating the TTM and OSD outputs from a ARPA radar and then host computer accepts NMEA0183 sentences on the maneuvering information of target ships from these simulators. The results obtained are summarized as follows;1. The system developed this study can be used as a range finder for measuring the distance between two ships and as a device for providing the maneuvering information such as distance and bearing to target ships from own ship on ECS screen. 2. From the result of position tracking for a selected target ship tracked with an update rate of 5 seconds using the $\alpha$-$\beta$ tracker, we concluded that the smoothing effect by the $\alpha$-$\beta$tracker was very effective and stable except in the time interval until about one minute after the target is detected. 3. From the fact that the real-time maneuvering information of tracked ship targets via a local area network (LAN) from a host computer installed a radar target extractor was successfully transferred to various monitoring computers of ship, we concluded that this system can be used as a sub-monitoring system of ARPA radar.

Analysis of Monostatic/Bistatic Radar Cross Section of Multi-target for Target Signals Simulation (항적 신호 모의를 위한 다기종 모노스태틱/바이스태틱 레이다반사면적 분석)

  • Park, Jun-Sik;Chi, Soung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.789-798
    • /
    • 2021
  • In this study, for the purpose of collecting and analyzing target-specific RCS data of target signals simulator for verification/improvement of radar system performance, VHF band monostatic/bistatic RCS of civil aircraft(B-747, B-737) and fighter(F-16) models were analyzed by EM simulation tool. In order to reduce the RCS analysis time, the analysis time and RCS data were compared and cross-verified. Also, the analysis range was selected by examining the interpolation error according to the analysis angle resolution. The RCS data obtained for each model were analyzed separately by the incident/reflection elevation angle and frequency. The RCS characteristics according to the shape of the aircraft and the incident/reflection azimuth angle were described. Finally, the statistical RCS distribution value of each model is presented through RCS distribution histogram analysis. In the future, the RCS database obtained by this study will be used for the target signals simulator of the VHF band radar system.

Take-Over Time Determination for High-Velocity Targets in a Multiple Radar System (다중 레이다 시스템의 고속표적 인계 시점 결정기법 연구)

  • Park, Soon-Seo;Jang, Dae-Sung;Choi, Han-Lim;Kim, Eun-Hee;Sun, Woong;Lee, Jong-Hyun;Yoo, Dong-Gil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.307-316
    • /
    • 2016
  • A multiple radar system is comprised of early warning radar for fast detection of a target and air defense radar for precision intercept. For this reason, target take-over process is required between the two radars. The target take-over should be performed at an appropriate time by consideration of stable tracking and effective fire control. In this paper, operation characteristics of multiple radar system are analyzed and target take-over time determination method using estimation of target tracking performance is proposed for high-velocity targets. The proposed method is validated with ballistic target defense scenarios in the developed integrated simulator.

High Resolution Radar Model to Simulate Detection/Tracking Performance of Multi-Function Radar in War Game Simulator (통합 교전 시뮬레이터 환경에서 다기능 레이다 탐지/추적 성능 모의를 위한 고해상도 레이다 모델)

  • Rim, Jae-Won;Oh, Suhyun;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.70-78
    • /
    • 2019
  • In this paper, modeling of a high-resolution multi-function radar is proposed to simulate radar performance in a war game simulator, called AddSIM. To incorporate the multi-function radar model into the AddSIM, the modeling must comprise a component-based structure consisting of physics, logics, and information blocks. Therefore, we assign the RF hardware of a RADAR as the physic block, a controller as the logics block, and the RF specifications of the RADAR as the information block. Detailed modeling of the physics and logics blocks are addressed, and data structure is also presented on an engineering level. On a multi-target engaged scenario, the performance of the multi-function radar is numerically analyzed and its validation is examined.

Generation of ISAR Image for Realistic Target Model Using General Purpose EM Simulators (범용 전자기파 시뮬레이터를 이용한 사실적 표적 모델에 대한 역합성 개구면 레이다 영상 합성)

  • Kim, Seok;Nikitin, Konstantin;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.189-195
    • /
    • 2015
  • There are many research works on the SAR image generation using EM(Electro Magnetic) simulation. Particularly, there are several dedicated S/Ws for SAR image generation and analysis. But, most of them are not available to the public due to the reason for defense and security. In this paper, we describe the generation of ISAR images for a realistic target model using the general purpose EM simulator like FEKO. This method can benefit us many advantages like building the database of many targets for target recognition with cost-and-time effective way.

Implementation of Airborne Multi-Function Radar Including Attitude Maneuvering (자세 기동을 고려한 항공기 탑재 다기능 레이다 통합 시뮬레이터 구현)

  • Ko, Jae-Youl;Park, Soon-Seo;Choi, Han-Lim;Ahn, Jae-Myung;Lee, Sung-Won;Lee, Dong-Hui;Yoon, Jung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.225-236
    • /
    • 2017
  • In this paper, a simulation test bed is presented which operates to provide full-scale simulation of airborne multi-function phased array radars. This simulation test bed provides a capability to evaluate the target tracking performance. To realize aircraft operation scenario, we developed 6DOF aircraft dynamics model which can generate trajectories and attitude of an aircraft. This procedure includes steady state flight trim search, autopilot design, and aircraft guidance command design. Also, the radar-environment integrated simulator includes target detection/measurement model and tracking filter. Developed simulator is validated by creating an air-to-air scenario.

Range-Doppler Map generating simulator for ship detection and tracking research using compact HF radar (콤팩트 HF 레이더를 이용한 선박 검출 및 추적 연구를 위한 Range-Doppler Map 생성 시뮬레이터)

  • Lee, Younglo;Park, Sangwook;Lee, Sangho;Ko, Hanseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.90-96
    • /
    • 2017
  • Due to the merit of having wide range with low cost, HF radar's ship detection and tracking research as maritime surveillance system has been recently studied. Many ship detection and tracking algorithms have been developed so far, however, performance comparison cannot be conducted properly because the states of target ships (such as moving path, size, etc.) differ from each study. In this paper, we propose a simulator based on compact HF radar, which generates data according to the size and moving path of target ship. Given the generated data with identical ship state, it is possible to conduct performance comparison. In order to validate the proposed simulator, the simulated data has been compared with real data collected by the SeaSonde HF radar sites. As a result, it has been shown that our simulated data resembles the real data. Therefore, the performance of various detection or tracking algorithms can be compared and analyzed respectively by using our simulated data.

Design and Implementation of Radar Resource Management Algorithms for Airborne AESA Radar (항공기 탑재 능동 위상배열 레이더의 자원관리 알고리즘 설계 및 구현)

  • Roh, Ji-Eun;Chon, Sang-Mi;Ahn, Chang-Soo;Jang, Seong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1190-1197
    • /
    • 2013
  • AESA(Active Electronically Scanned Array radar) radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability. For this reason, radar resource management(RRM) becomes new challenging issue. RRM is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. This paper deals with a design of radar resource management algorithms and simulator implemented main algorithms for development of airborne AESA radar. In addition, evaluation results show that developed radar system satisfies a main requirement about simultaneous multiple target tracking and detection by adopting proposed algorithms.

Development and application of simulator for spotlight SAR image formation and quality assesment using RMA (RMA를 이용한 Spotlight SAR 영상형성 및 품질평가를 위한 시뮬레이터 개발 및 구현)

  • Kwak, Jun-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.183-194
    • /
    • 2011
  • Synthetic aperture radar (SAR) is widely used because of high resolution imaging capability in all weather and day/night condition. In this paper development of Spotlight SAR simulator is proposed for image quality analysis. Proposed SAR simulator is based on the SAR system design parameters so that SAR image performance can be expected which is essential throughout the full system development procedure from the initial concept design stage to the final in-flight calibration and validation stage. The raw data of ideal point target is first generated by taking account of the flight and imaging geometry and the various SAR system design parameters, and the Spotlight image formation algorithm is implemented in order to obtain the point target response. Finally the image quality of the generated raw data is analyzed in terms of spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio.