DOI QR코드

DOI QR Code

High Resolution Radar Model to Simulate Detection/Tracking Performance of Multi-Function Radar in War Game Simulator

통합 교전 시뮬레이터 환경에서 다기능 레이다 탐지/추적 성능 모의를 위한 고해상도 레이다 모델

  • Rim, Jae-Won (Department of Electronic Engineering, Inha University) ;
  • Oh, Suhyun (Department of Electronic Engineering, Inha University) ;
  • Koh, Il-Suek (Department of Electronic Engineering, Inha University)
  • 임재원 (인하대학교 전자공학과) ;
  • 오수현 (인하대학교 전자공학과) ;
  • 고일석 (인하대학교 전자공학과)
  • Received : 2018.11.19
  • Accepted : 2018.12.20
  • Published : 2019.01.31

Abstract

In this paper, modeling of a high-resolution multi-function radar is proposed to simulate radar performance in a war game simulator, called AddSIM. To incorporate the multi-function radar model into the AddSIM, the modeling must comprise a component-based structure consisting of physics, logics, and information blocks. Therefore, we assign the RF hardware of a RADAR as the physic block, a controller as the logics block, and the RF specifications of the RADAR as the information block. Detailed modeling of the physics and logics blocks are addressed, and data structure is also presented on an engineering level. On a multi-target engaged scenario, the performance of the multi-function radar is numerically analyzed and its validation is examined.

본 논문에서 통합 전장 시뮬레이터 환경인 AddSIM에서 레이다 동작을 모의하기 위한 고해상도 다기능 레이다의 모델링을 제안한다. 다기능 레이다 모델을 AddSIM에 연동하기 위해, 모델링은 물리부, 논리부, 정보부로 구성된 컴포넌트 기반의 구조를 가져야 한다. 이를 위해, 레이다의 RF 하드웨어부를 물리부로, 제어부를 논리부로, 레이다의 RF 제원을 정보부로 각각 분리한다. 레이다의 물리부/논리부에 대한 세부 모델링 방법을 기술하며, 공학급 레벨의 시뮬레이션을 위한 데이터 구조 또한 제시한다. 다중 표적이 교전하는 시나리오에서 다기능 레이다의 성능이 수치적으로 분석하며 제안된 모델에 대한 타당성을 검증한다.

Keywords

JJPHCH_2019_v30n1_70_f0001.png 이미지

그림 1. 간략한 AddSIM의 동작 개념 Fig. 1. Simplified operation concept of AddSIM.

JJPHCH_2019_v30n1_70_f0002.png 이미지

그림 2. 다중표적 교전환경에서 다기능 레이다 운용 Fig. 2. Operation of multi-function radar on multi-target en-gagement configuration.

JJPHCH_2019_v30n1_70_f0003.png 이미지

그림 3. 공학급 다기능 레이다의 물리부 및 논리부 블록도 Fig. 3. Physics and logics component blocks of multi-func-tion radar model in engineering level.

JJPHCH_2019_v30n1_70_f0004.png 이미지

그림 4. 시간 인자 기반 탐색/확인/추적 임무선택 흐름도 Fig. 4. Flow chart for search, confirm, track task selection based on time balance.

JJPHCH_2019_v30n1_70_f0005.png 이미지

그림 5. 물리부/논리부 상호연동 임무 데이터 구조 Fig. 5. Task data structure used for inter-operation of phy-sics and logics blocks.

JJPHCH_2019_v30n1_70_f0006.png 이미지

그림 6. AddSIM 커널, 공중 위협체, 다기능 레이다의 상호 연동 체계 Fig. 6. Inter-operation among AddSIM kernel, air threat, and multi-function radar.

JJPHCH_2019_v30n1_70_f0007.png 이미지

그림 7. 공중 위협체의 2D 편광 RCS Fig. 7. 2D polarimetric RCS DB of air threat.

JJPHCH_2019_v30n1_70_f0008.png 이미지

그림 8. 3D 전역 좌표계 영역에서 분할된 레이다 탐색 (R1, R2, R3) 빔 Fig. 8. Segmented radar search (R1, R2, and R3) beams in 3D global coordinate system.

JJPHCH_2019_v30n1_70_f0009.png 이미지

그림 9. 공중 위협체 및 추적 히스토리의 3D 궤적 Fig. 9. 3D trajectories of air threats and radar estimate history.

JJPHCH_2019_v30n1_70_f0010.png 이미지

그림 10. 전력 히스토리 및 시간인자 Fig. 10. Power history and time balance.

JJPHCH_2019_v30n1_70_f0011.png 이미지

그림 11. 교전 시나리오에서 표적 수 증가에 따른 시뮬레이션 시간 비 Fig. 11. Simulation time ratio with respect to number of targets on engagement scenario.

표 1. 레이다 시뮬레이션 파라미터 Table 1. Radar simulation parameters.

JJPHCH_2019_v30n1_70_t0001.png 이미지

표 2. 레이다 탐색 임무 파라미터 Table 2. Radar search task parameters.

JJPHCH_2019_v30n1_70_t0002.png 이미지

표 3. 공중 위협체 시뮬레이션 파라미터 Table 3. Air threat simulation parameters.

JJPHCH_2019_v30n1_70_t0003.png 이미지

표 4. 레이다 임무 자원할당률 비교 Table 4. Comparison for occupancy of radar tasks.

JJPHCH_2019_v30n1_70_t0004.png 이미지

References

  1. L. K. Piplani, Systems Acquisition Manager's Guide for the use of Models and Simulations, Defense Systems Management Coll Fort Belvoir Va, 1994.
  2. N. S. Board, National Research Council, Technology for the United States Navy and Marine Corps, 2000-2035 becoming a 21st Century Force, Washington DC, National Academies, 1997.
  3. M. A. Stoler, Allies and Adversaries: The Joint Chiefs of Staff, the Grand Alliance, and US Strategy in World War II, Chapel Hill, NC, UNC Press Books, 2003.
  4. J. F. Schnabel, R. J. Watson, and K. W. Condit, History of the Joint Chiefs of Staff: The Joint Chiefs of Staff and National Policy, vol. 8, Historical Division, Joint Chiefs of Staff, 2011.
  5. H. S. Oh, S. Park, H. J. Kim, T. Lee, S. Lee, and D. Kim, et al., "AddSIM: A new Korean engagement simulation environment using high resolution models," in Proceedings of the Winter Simulation Conference 2014, Savanah, GA, 2014, pp. 2942-2953.
  6. J. M. Butler, "Tracking and Control in Multi-function Radar," Ph.D. dissertation, University of London, 1998.
  7. D. M. Pozar, Microwave Engineering, New Delhi, John Wiley & Sons, 2012.
  8. B. R. Mahafza, Radar Systems Analysis and Design Using MATLAB, 3rd ed. Boca Raton, FL, CRC Press, 2013.
  9. M. Kolawole, Radar Systems, Peak Detection and Tracking, Burlington, Elsevier, 2003.
  10. S. M. Sherman, D. K. Barton, Monopulse Principles and Techniques, Boston, Artech House, 2013.
  11. M. I. Skolnik, Radar Handbook, New York, John Wiely & Sons, 2007.
  12. J. W. Rim, K. H. Jung, I. S. Koh, C. Baek, S. Lee, and S. H. Choi, "Simulation of dynamic EADs jamming performance against tracking radar in presence of airborne platform," International Journal of Aeronautical and Space Sciences, vol. 16, no. 3, pp. 475-483, 2015. https://doi.org/10.5139/IJASS.2015.16.3.475
  13. C. H. Teh, B. K. Chung, and E. H. Lim, "An accurate and efficient 3D shooting-and-bouncing-polygon ray tracer for radio propagation modeling," IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7244-7254, 2018. https://doi.org/10.1109/TAP.2018.2874519
  14. T. Jeffrey, Phased-array Radar Design: Application of Radar Fundamentals, Raleigh, NC, SciTech Publishing, 2009.