• Title/Summary/Keyword: RUNX

Search Result 163, Processing Time 0.021 seconds

Prognostically Significant Fusion Oncogenes in Pakistani Patients with Adult Acute Lymphoblastic Leukemia and their Association with Disease Biology and Outcome

  • Sabir, Noreen;Iqbal, Zafar;Aleem, Aamer;Awan, Tashfeen;Naeem, Tahir;Asad, Sultan;Tahir, Ammara H;Absar, Muhammad;Hasanato, Rana MW;Basit, Sulman;Chishti, Muhammad Azhar;Ul-Haque, Muhammad Faiyaz;Khalid, Ahmad Muktar;Sabar, Muhammad Farooq;Rasool, Mahmood;Karim, Sajjad;Khan, Mahwish;Samreen, Baila;Akram, Afia M;Siddiqi, Muhammad Hassan;Shahzadi, Saba;Shahbaz, Sana;Ali, Agha Shabbir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3349-3355
    • /
    • 2012
  • Background and objectives: Chromosomal abnormalities play an important role in genesis of acute lymphoblastic leukemia (ALL) and have prognostic implications. Five major risk stratifying fusion genes in ALL are BCR-ABL, MLL-AF4, ETV6-RUNX11, E2A-PBX1 and SIL-TAL1. This work aimed to detect common chromosomal translocations and associated fusion oncogenes in adult ALL patients and study their relationship with clinical features and treatment outcome. Methods: We studied fusion oncogenes in 104 adult ALL patients using RT-PCR and interphase-FISH at diagnosis and their association with clinical characteristics and treatment outcome. Results: Five most common fusion genes i.e. BCR-ABL (t 9; 22), TCF3-PBX1 (t 1; 19), ETV6-RUNX1 (t 12; 21), MLL-AF4 (t 4; 11) and SIL-TAL1 (Del 1p32) were found in 82/104 (79%) patients. TCF3-PBX1 fusion gene was associated with lymphadenopathy, SIL-TAL1 positive patients had frequent organomegaly and usually presented with a platelets count of less than $50{\times}10^9/l$. Survival of patients with fusion gene ETV6-RUNX1 was better when compared to patients harboring other genes. MLL-AF4 and BCR-ABL positivity characterized a subset of adult ALL patients with aggressive clinical behaviour and a poor outcome. Conclusions: This is the first study from Pakistan which investigated the frequency of5 fusion oncogenes in adult ALL patients, and their association with clinical features, treatment response and outcome. Frequencies of some of the oncogenes were different from those reported elsewhere and they appear to be associated with distinct clinical characteristics and treatment outcome. This information will help in the prognostic stratification and risk adapted management of adult ALL patients.

Osteoblastogenic Activity of Locusta migratoria Ethanol Extracts on Pre-Osteoblastic MG-63 Cells (풀무치 에탄올 추출물이 MG-63 조골세포 분화에 미치는 영향)

  • Baek, Minhee;Seo, Minchul;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1448-1454
    • /
    • 2018
  • Insects have been investigated as a novel source of food and biomaterial in several recent studies. However, their osteoblastogenic cell activity has not been sufficiently researched and so, to investigate the potential of this natural material for promoting osteoblastogenesis, we studied the activity of Locusta migratoria ethanol extract (LME) on MG-63 pre-osteoblast cells. The cytotoxicity and proliferation effects of LME on MG-63 cells were measured by MTS assay, and there was no cytotoxicity up to $1,000{\mu}g/ml$. With LME treatment of 500 and $1,000{\mu}g/ml$ for 48 hr, cell proliferation increased to 105% and 116% versus control, respectively. The osteoblastogenic activity of the LME was measured through alkaline phosphatase (ALP) staining at three and five days. As a result, both 500 and $1,000{\mu}g/ml$ LME concentrations were seen to increase ALP activity by more than three times compared with control at three and five days. In addition, the expression level of the osteogenic markers ALP and RUNX2 was markedly increased after LME treatment. These results demonstrate that Locusta migratoria ethanol extract promotes osteoblastogenesis as evidenced by the increased osteogenic markers and suggest that LME may be a potential agent for bone formation and osteoporosis prevention.

Effect of Fibroblast Growth Factor 23 on Osteoblastic Differentiation and Mineralization of D1 Mesenchymal Stem Cells (섬유모세포성장인자-23이 D1 간엽줄기세포에서 조골세포로의 분화 및 기질 광화에 미치는 영향)

  • Park, Kyeong-Lok
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Although fibroblast growth factor 23 (FGF23) is exclusively produced in osteoblasts and osteocytes, its main target is the kidney, where it decreases phosphate reabsorption by suppressing Na-phosphate cotransporters. Independently of its action on phosphate homeostasis, FGF23 also inhibits bone formation in vivo. In a calvarial osteoblastic cell model, FGF23 was shown to negatively affect extracellular matrix mineralization. This study investigated whether FGF23 had similar effects on osteoblast maturation, including differentiation and mineralization of bone marrow-derived mesenchymal stem cells (MSCs). D1 MSCs were cultured in an osteogenic medium containing β-glycerophosphate, ascorbic acid, and dexamethazone. Osteoblastic differentiation was evaluated by alkaline phosphatase (Alp) staining, and matrix mineralization was evaluated by alizarin red staining and calcium deposition. The expression of differentiation-stimulating genes Runx2, Alp, and osteocalcin and mineralization-inhibiting genes Enpp1 and Ank was analyzed using semiquantitative RT-PCR. Supraphysiological doses of FGF23 did not stimulate proliferation or osteoblastic differentiation of MSCs. Matrix mineralization 1, 2, and 3 weeks after the FGF23 treatment did not vary between control and FGF23 groups, although time-dependent enhancement of mineralization was obvious. Calcium deposition was also unchanged after the FGF23 treatment. mRNA expression levels of differentiation- and mineralization-related genes were also similar between the groups. Despite these negative findings, FGF23 signaling through FGF receptors seemed to function normally, with phosphorylation of the Erk protein more evident in the FGF23 group than in controls. These findings suggest that unlike calvarial osteoblasts, FGF23 is not likely to affect osteoblastic differentiation and mineralization of MSCs.

Response of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2

  • Han, Seung-Hee;Kim, Kyoung-Hwa;Han, Jung-Seok;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.227-233
    • /
    • 2011
  • Purpose: The aim of this study was to compare osteoblast behavior on zirconia and titanium under conditions cultured with bone morphogenetic protein-2. Methods: MC3T3-E1 cells were cultured on sandblasted zirconia and sandblasted/etched titanium discs. At 24 hours after seeding MC3T3-E1, the demineralized bone matrix (DBM) gel alone and the DBM gel with bone morphogenetic protein-2 (BMP-2) were added to the culture medium. The surface topography was examined by confocal laser scanning microscopy. Cellular proliferation was measured at 1, 4, and 7 days after gel loading. Alkaline phosphatase activity was measured at 7 days after gel loading. The mRNA expression of ALPase, bone sialoprotein, type I collagen, runt-related transcription factor 2 (Runx-2), osteocalcin, and osterix were evaluated by real-time polymerase chain reaction at 4 days and 7 days. Results: At 1, 4, and 7 days after loading the DBM gel alone and the DBM gel with BMP-2, cellular proliferation on the zirconia and titanium discs was similar and that of the groups cultured with the DBM gel alone and the DBM gel with BMP-2 was not significantly different, except for titanium with BMP-2 gel. ALPase activity was higher in the cells cultured with BMP-2 than in the other groups, but there was no difference between the zirconia and titanium. In ALPase, bone sialoprotein, osteocalcin, Runx-2 and osterix gene expression, that of cells on zirconia or titanium with BMP-2 gel was much more highly increased than titanium without gel at day 7. The gene expression level of cells cultured on zirconia with BMP-2 was higher than that on titanium with BMP-2 at day 7. Conclusions: The data in this study demonstrate that the osteoblastic cell attachment and proliferation of zirconia were comparable to those of titanium. With the stimulation of BMP-2, zirconia has a more pronounced effect on the proliferation and differentiation of the osteoblastic cells compared with titanium.

Optimized Internal Control and Gene Expression Analysis in Epstein-Barr Virus-Transformed Lymphoblastoid Cell Lines

  • Nam, Hye-Young;Kim, Hye-Ryun;Shim, Sung-Mi;Lee, Jae-Eun;Kim, Jun-Woo;Park, Hye-Kyung;Han, Bok-Ghee;Jeon, Jae-Pil
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.127-133
    • /
    • 2011
  • The Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) is one of the major genomic resources for human genetics and immunological studies. Use of LCLs is currently extended to pharmacogenetic studies to investigate variations in human gene expression as well as drug responses between individuals. We evaluated four common internal controls for gene expression analysis of selected hematopoietic transcriptional regulatory genes between B cells and LCLs. In this study, the expression pattern analyses showed that TBP (TATA box-binding protein) is a suitable internal control for normalization, whereas GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is not a good internal control for gene expression analyses of hematopoiesis-related genes between B cells and LCLs at different subculture passages. Using the TBP normalizer, we found significant gene expression changes in selected hematopoietic transcriptional regulatory genes (downregulation of RUNX1, RUNX3, CBFB, TLE1, and NOTCH2 ; upregulation of MSC and PLAGL2) between B cells and LCLs at different passage numbers. These results suggest that these hematopoietic transcriptional regulatory genes are potential cellular targets of EBV infection, contributing to EBV-mediated B-cell transformation and LCL immortalization.

THE EFFECTS OF ${\beta}-TCP$/rhBMP-2 ON BONE FORMATION IN OSTEOBLAST-LIKE CELLS INDUCED FROM BONE MARROW-DERIVED MESENCHYMAL STEM CELLS (골수유래줄기세포에서 분화된 골유사세포에서 ${\beta}-TCP$와 rhBMP-2의 골형성 효과에 관한 연구)

  • Choi, Yong-Soo;Hwang, Kyung-Gyun;Lee, Jae-Seon;Park, Chang-Joo;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.4
    • /
    • pp.419-427
    • /
    • 2008
  • The present study aimed to investigate the osteogenic potentials of differentiated osteoblast-like cells (DOCs) induced from bone marrow-derived mesenchymal stem cells (MSCs) on ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) with recombinant human bone morphogenetic protein (rhBMP-2) in vitro. Osteoblast differentiation was induced in confluent cultures by adding 100 nM dexamethasone, 10 mM ${\beta}$-glycerophosphate, 50 mM L-ascorbic acid. The Alizarin red S staining and reverse transcriptase-polymerase chain reaction (RT-PCR) were perfomed to examine the mRNA expression of alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN), receptor activator for nuclear factor ${\kappa}B$ ligand (RANKL), runt-related transcription factor 2 (RUNX2), collagen-Ⅰ (COL-Ⅰ). There were no significant differences in the osteogenic potentials of DOCs induced from MSCs on ${\beta}-TCP(+/-)$. According to the incubation period, there were significant increasing of Alizadin red S staining in the induction 3 weeks. The mRNA expression of ALP, RUNX2, and RANKL were higher in DOCs/${\beta}-TCP(-)$ than DOCs/${\beta}-TCP(+)$. According to rhBMP-2 concentrations, the mRNA expression of BSP was significantly increased in DOCs/${\beta}-TCP(+)$ compared to that of DOCs/${\beta}-TCP(-)$ on rhBMP 10 ng/ml. Our study presented the ${\beta}-TCP$ will have the possibility that calcium phosphate directly affect the osteoblastic differentiation of the bone marrowderived MSCs.

Effect of Fermented Benincasa hispida cong. Extract on Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Generation (동과 발효물의 조골세포 분화 촉진 및 파골세포 생성 억제 효과)

  • Choi, Ye-Eun;Yang, Jung-Mo;Yoo, Hee-Won;Cho, Ju-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.364-371
    • /
    • 2022
  • The bones of the human body support the structures of the body and provide protection for a person's internal organs. Bone metabolic diseases are on the rise due to a significant increase in life expectancy over a short period of time. Therefore, we investigated the osteoblast differentiation promoting and osteoclastogenesis inhibitory activities of fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf). We evaluated the alkaline phosphatase (ALP) activity of MC3T3-E1 mouse calvarial-derived osteoblasts. We also evaluated expression of ALP, osteocalcin (OCN), and runt-related transcription factor 2 (Runx2), which regulate osteoblast differentiation. To assess effects on osteoclast formation, tartrate-resistant acid phosphatase (TRAP) activity in RAW264.7 cells was analyzed. ALP activity increased by 121-136% and 140-156%, respectively in the presence of HR1901-BS and HR1901-BSaf. Expression of osteoblast differentiation factor also increased significantly. We also confirmed that HR1901-BS and HR1901-BSaf decreased TRAP activity in osteoclasts by 35-47% and 23-39%, respectively. Our results showed that fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf) increase bone mineralization and osteoblast differentiation activity in MC3T3-E1 cells, and inhibit bone resorption activity in RAW264.7 cells. In conclusion, fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf) can be used as an effective natural resource for preventing and treating bone-related diseases.

Molecular mechanisms of hederagenin in bone formation (Hederagenin의 뼈 형성 관련 작용 기전 연구)

  • Hyun-Ju Seo;In-Sook Kwun;Jaehee Kwon;Yejin Sim;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.55 no.6
    • /
    • pp.617-629
    • /
    • 2022
  • Purpose: Osteoporosis is characterized by structural deterioration of the bone tissue because of the loss of osteoblastic activity or the increase in osteoclastic activity, resulting in bone fragility and an increased risk of fractures. Hederagenin (Hed) is a pentacyclic triterpenoid saponin isolated from Dipsaci Radix, the dried root of Dipsacus asper Wall. Dipsaci Radix has been used in Korean herbal medicine to treat bone fractures. In this study, we attempted to demonstrate the potential anti-osteoporotic effect of Hed by examining its effect on osteoblast differentiation in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured in 0, 1, and 10 ㎍/mL Hed for 3 and 7 days. The activity of alkaline phosphatase (ALP), bone nodule formation and level of expression of bone-related genes and proteins were measured in MC3T3-E1 cells exposed to Hed. The western blot test was used to detect the activation of the bone morphogenetic protein-2 (BMP2)/ Suppressor of Mothers against Decapentaplegic (SMAD)1 pathway. Results: Hed significantly increased the proliferation of MC3T3-E1 cells. Intracellular ALP activity was significantly increased in the 1 ㎍/mL Hed-treated group. Hed significantly increased the concentration of calcified nodules. Furthermore, Hed significantly upregulated the expression of genes and proteins associated with osteoblast proliferation and differentiation, such as Runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN), and type I procollagen (ProCOL1). Induction of osteoblast differentiation by Hed was associated with increased BMP2. In addition, Hed induced osteoblast differentiation by increasing the activity of SMAD1/5/8. These results suggest that Hed has the potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells via the modulation of the BMP2/SMAD1 pathway. Conclusion: The results presented in this study indicate that Hed isolated from Dipsaci Radix has the potential to be developed as a healthcare food and functional material possessing anti-osteoporosis effects.

The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1

  • Min-Kyu Kim;Sang-Hyun Han;Tae-Geun Park;Soo-Hyun Song;Ja-Youl Lee;You-Soub Lee;Seo-Yeong Yoo;Xin-Zi Chi;Eung-Gook Kim;Ju-Won Jang;Dae Sik Lim;Andre J. van Wijnen;Jung-Won Lee;Suk-Chul Bae
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.592-610
    • /
    • 2023
  • The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.

Evaluation of Syringaresinol Content and MC3T3E1 Osteoblast Differentiation of Fermented Extracts of Eleutherococcus senticosus Using Lactobacillus ssp. with High 𝛽-Glucosidase Activity (𝛽-Glucosidase 활성이 높은 유산균을 이용한 한국가시오갈피 발효 추출물의 Syringaresinol의 함량 및 MC3T3E1조골세포 분화 평가)

  • Minji Kang;Minkyoung Kang;Sangnam Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.48-63
    • /
    • 2024
  • This study investigated the 𝛽-glucosidase activity of lactic acid bacteria and specifically eleutheroside E and B from Acanthopanax senticosus after bioconverting them into syringaresinol (SYR). Out of 125 lactic acid bacteria strains isolated from kimchi and other sources, 46 exhibiting both extracellular and internal 𝛽-glucosidase activity were identified. Notably, strains LFFR 20-011 (Lactobacillus curvatus) and LFFR 20-043/LFR20-050 (Levilactobacillus brevis) enhanced SYR production by more than two-fold during Acanthopanax senticosus fermentation. Further investigation revealed that SYR significantly promoted osteoblast differentiation, as evidenced by the increased mRNA expression levels of early and mature osteoblast markers, including Runx2, type I collagen, and osteocalcin. These findings suggested that the enhanced presence of SYR through bioconversion by Acanthopanax senticosus may improve bone health. These results provide foundational data supporting the development of lactic-acid-bacteria-fermented Acanthopanax senticosus as a functional food aimed at promoting skeletal health in older adults.