• 제목/요약/키워드: RT-qPCR assay

검색결과 122건 처리시간 0.025초

DNA methyltransferase 3a is Correlated with Transgene Expression in Transgenic Quails

  • Jang, Hyun-Jun;Kim, Young-Min;Rengaraj, Deivendran;Shin, Young-Soo;Han, Jae-Yong
    • Journal of Animal Science and Technology
    • /
    • 제53권3호
    • /
    • pp.269-274
    • /
    • 2011
  • DNA methyltransferases (DNMTs) are closely associated with the epigenetic change and the gene silencing through the regulation of methylation status in animal genome. But, the role of DNMTs in transgene silencing has remained unclear. So, we examined whether the knockdown of DNMT influences the reactivation of transgene expression in the transgenic quails. In this study, we investigated the expression of DNMT3a, and DNMT3b in blastoderm, quail embryonic fibroblasts (QEFs) and limited embryonic tissues such as gonad, kidney, heart and liver of E6 transgenic quails (TQ2) by RT-PCR. We further analyzed the expression of DNMT3a at different stages of whole embryos during early embryonic development by qRT-PCR. DNMT3a expression was detected in all test samples; however, it showed the highest expression in E6 whole embryo. Embryonic fibroblasts collected from TQ2 quails were treated with two DNMT3a-targeted siRNAs (siDNMT3a-51 and siDNMT3a-88) for RNA interference assay, and changes in expression were then analyzed by qRT-PCR. The siDNMT3a-51 and siDNMT3a-88 reduced 53.34% and 64.64% of DNMT3a expression in TQ2 QEFs, respectively. Subsequently the treatment of each siRNA reactivated enhanced green fluorescent protein (EGFP) expression in TQ2 (224% and 114%). Our results might provide a clue for understanding the DNA methylation mechanism responsible for transgenic animal production and stable transgene expression.

Isolation and characterization of feline endometrial mesenchymal stem cells

  • Mi-Kyung Park;Kun-Ho Song
    • Journal of Veterinary Science
    • /
    • 제25권2호
    • /
    • pp.31.1-31.8
    • /
    • 2024
  • Background: Recently, there has been a growing interest in stem cells for human medicine. Limited feline endometrial mesenchymal stem cell (fEM-MSC) research in veterinary medicine necessitates reporting for future feline disease research and therapy. Objectives: This study aimed to isolate fEM-MSCs from feline endometrial tissues and evaluate their morphology, proliferative ability, differentiation ability, and immunophenotype. Methods: Feline endometrial tissues were obtained from the ovariohysterectomies of healthy cats and isolated using an enzymatic method. The morphology and proliferative ability of the isolated cells were assessed using a doubling time (DT) assay from passages 3 to 6 (P3 - P6). We measured pluripotency gene expressions of cells in P2 using quantitative real-time polymerase chain reaction (qRT-PCR). To investigate MSC characteristics, a trilineage differentiation assay was conducted in P4, and cells in P4 were immunophenotyped using flow cytometry. Results: fEM-MSCs showed a typical spindle-shaped morphology under a microscope, and the DT was maintained from P3 to P6. fEM-MSCs could differentiate into adipocytes, osteoblasts, and chondrocytes, and expressed three pluripotency markers (OCT4, SOX2, and NANOG) by qRT-PCR. Immunophenotypic analysis showed that the fEM-MSCs were CD14 -, CD34 -, CD45 -, CD9+, and CD44+. Conclusions: In this study, the feline endometrium was a novel source of MSCs, and to the best of our knowledge, this is the first report on the isolation method and characteristics of fEM-MSCs.

단백질 아르기닌 메틸전이효소 5(PRMT5)에 의한 3T3L-1 세포의 지방세포 분화 조절 (Protein Arginine Methyltransferase 5 (PRMT5) Regulates Adipogenesis of 3T3L-1 Cells)

  • 장민준;양지혜;김은주
    • 생명과학회지
    • /
    • 제28권7호
    • /
    • pp.765-771
    • /
    • 2018
  • $PPAR{\gamma}$는 지방세포의 분화를 조절하는 핵심적인 전사 인자로서 이를 조절하는 후성유전학적 조절 기전이 비만억제 연구에서 중요하게 주목 받고 있다. 선행연구에서 CACUL1이 $PPAR{\gamma}$의 전사 활성 및 지방세포의 분화를 억제하는 corepressor로서 작용함을 밝힌 바 있으며 본 연구에서는 CACUL1의 새로운 결합 단백질로 발굴된 protein arginine methyltransferase 5 (PRMT5)의 $PPAR{\gamma}$ 조절 기능을 분석하였다. PRMT5가 CACUL1과 결합함을 immunoprecipitation assay in vivo와 GST-pull down assay in vitro를 통하여 확인하였다. Luciferase reporter assay 결과로 두 단백질이 상호 협력하여 $PPAR{\gamma}$의 전사 활성을 억제함을 확인하였다. PRMT5가 안정적으로 과발현 또는 knockdown되는 3T3-L1 세포주를 제작하여 지방세포 분화에 미치는 영향을 분석한 결과, PRMT5가 3T3-L1세포의 지방세포 분화를 억제함을 증명하였다. 같은 맥락으로 PRMT5는 $PPAR{\gamma}$의 타겟 유전자인 Lpl과 aP2의 발현을 억제하는 것을 RT-qPCR로 확인하였다. 이상의 연구 결과로 PRMT5이 CACUL1과 결합하여 $PPAR{\gamma}$의 전사 활성을 방해, 나아가 지방세포의 분화를 억제하는 기존에 알려지지 않은 분자적 기전을 처음으로 밝혔다. 따라서, PRMT5 효소 활성의 조절은 비만 억제를 위한 약물 개발에 단서를 제공할 것이다.

Down-regulation of miRNA-452 is Associated with Adriamycin-resistance in Breast Cancer Cells

  • Hu, Qing;Gong, Jian-Ping;Li, Jian;Zhong, Shan-Liang;Chen, Wei-Xian;Zhang, Jun-Ying;Ma, Teng-Fei;Ji, Hao;Lv, Meng-Meng;Zhao, Jian-Hua;Tang, Jin-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5137-5142
    • /
    • 2014
  • Adriamycin (ADR) is an important chemotherapeutic agent frequently used in treatment of breast cancer. However, resistance to ADR results in treatment failure in many patients. Recent studies have indicated that microRNAs (miRNAs) may play an important role in such drug-resistance. In the present study, microRNA-452 (miR-452) was found to be significantly down-regulated in adriamycin-resistant MCF-7 cells (MCF-7/ADR) compared with the parental MCF-7 cells by miRNA microarray and real-time quantitative PCR (RT-qPCR). MiR-452 mimics and inhibitors partially changed the adriamycin-resistance of breast cancer cells, as also confirmed by apoptosis assay. In exploring the potential mechanisms of miR-452 in the adriamycin-resistance of breast cancer cells, bioinformatics analysis, RT-qPCR and Western blotting showed that dysregulation of miR-452 played an important role in the acquired adriamycin-resistance of breast cancer, maybe at least in part via targeting insulin-like growth factor-1 receptor (IGF-1R).

건선 모사 피부 염증모델에서 대황목단피탕(大黃牧丹皮湯)의 효능 연구 (Effect of Daehwangmokdanpitang on psoriasis-like skin inflammation)

  • 노경란;권빛나;김동욱;오진영;양갑식;조일주
    • 대한융합한의학회지
    • /
    • 제6권1호
    • /
    • pp.29-36
    • /
    • 2024
  • Objectives: Psoriasis is a common chronic inflammatory skin disease characterized by keratinocyte hyperproliferation and an excessive inflammatory response. Agents that can attenuate keratinocyte hyperproliferation and excessive inflammatory responses are considered potentially useful for the treatment of psoriasis. Daehwangmokdanpitang (DHMDPT) exhibits a broad range of bioactivities, including anti-proliferative and anti-inflammatory effects. This study aims to evaluate the anti-psoriatic potential of DHMDPT in vitro. Methods: HaCaT keratinocytes were stimulated with a mixture of IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) to establish an in vitro psoriatic keratinocyte model. Cell viability was measured using the MTT assay. Quantitative real-time PCR (qRT-PCR) was performed to measure the mRNA levels of the hyperproliferative marker gene keratin 6 (KRT6) and inflammatory factors such as IL-6, TNF-α, and IL-23A. Additionally, chemokines including CCL5, CCL2, CCL20, and CXCL1 were measured by qRT-PCR. Results: DHMDPT attenuated M5-induced hyperproliferation, as indicated by a reduction in KRT6 expression in HaCaT keratinocytes. M5 stimulation significantly upregulated the mRNA levels of IL-6, TNF-α, and IL-23A. However, DHMDPT treatment attenuated the upregulation of IL-6 but not TNF-α or IL-23A. Additionally, DHMDPT inhibited the expression of CCL5, CCL2, and CXCL1, but not CCL20. Conclusion: DHMDPT effectively attenuated the M5-induced proliferation and inflammatory response in HaCaT keratinocytes. Therefore, DHMDPT could be an attractive candidate for future development as an anti-psoriatic agent.

  • PDF

Comprehensive Evaluation of the Anti-Helicobacter pylori Activity of Scutellariae Radix

  • Lee, Ba Wool;Park, Il-Ho;Yim, Dongsool;Choi, Sung Sook
    • Natural Product Sciences
    • /
    • 제23권1호
    • /
    • pp.46-52
    • /
    • 2017
  • The aim of this study was to evaluate the anti-Helicobacter pylori activity of fractions and major aglycon compounds (baicalein, chrysin, oroxylin A, wogonin) of Scutellariae Radix. Minimum inhibitory concentration (MIC) measurement, DPPH radical-scavenging assay, DNA protection assay, and urease inhibition analysis were performed. The ethyl acetate (EtOAc) fraction showed the potent anti-Helicobacter activity, and therefore, compounds in the EtOAc fraction were subjected to further assay. The MICs of chrysin, oroxylin A, and wogonin against Helicobacter pylori 26695 were 6.25, 12.5 and $25{\mu}g/mL$, respectively. Baicalein exhibited the most effective DPPH radical-scavenging activity. DNA protection using Fenton reaction, chrysin, oroxylin A, and wogonin showed effective DNA protective effect. This result was also confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Regarding Jack bean urease (0.5 mg/mL, 50 unit/mg) inhibition, 20 mM ofbaicalein and chrysin inhibited urease activity by 88.2% and 72.5%, respectively.

RhoBTB3 Regulates Proliferation and Invasion of Breast Cancer Cells via Col1a1

  • Kim, Kyungho;Kim, Youn-Jae
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.631-639
    • /
    • 2022
  • Breast cancer is the leading cause of cancer-related death in women worldwide, despite medical and technological advancements. The RhoBTB family consists of three isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. RhoBTB1 and RhoBTB2 have been proposed as tumor suppressors in breast cancer. However, the roles of RhoBTB3 proteins are unknown in breast cancer. Bioinformatics analysis, including Oncomine, cBioportal, was used to evaluate the potential functions and prognostic values of RhoBTB3 and Col1a1 in breast cancer. qRT-PCR analysis and immunoblotting assay were performed to investigate relevant expression. Functional experiments including proliferation assay, invasion assay, and flow cytometry assay were conducted to determine the role of RhoBTB3 and Col1a1 in breast cancer cells. RhoBTB3 mRNA levels were significantly up-regulated in breast cancer tissues as compared to in adjacent normal tissues. Moreover, RhoBTB3 expression was found to be associated with Col1a1 expression. Decreasing RhoBTB3 expression may lead to decreases in the proliferative and invasive properties of breast cancer cells. Further, Col1a1 knockdown in breast cancer cells limited the proliferative and invasive ability of cancer cells. Knockdown of RhoBTB3 may exert inhibit the proliferation, migration, and metastasis of breast cancer cells by repressing the expression of Col1a1, providing a novel therapeutic strategy for treating breast cancer.

Effects of Age and Gender on the Viability and Stem Cell Markers, mRNA, and Protein Expression of Bone Marrow-Derived Stem Cells Cultured in Growth Media

  • Lee, Hyunjin;Lee, Hyuna;Na, Chae-Bin;Park, Jun-Beom
    • Journal of Korean Dental Science
    • /
    • 제11권2호
    • /
    • pp.62-70
    • /
    • 2018
  • Purpose: Bone marrow has long been a source of primary cells. This study was performed to evaluate the effects of age and sex on the cellular viability and expression of stem cell markers of mRNA and on the protein expression of bone marrow stem cells (BMSCs) derived from healthy donors. Materials and Methods: Stem cells were isolated from human bone marrow and plated in culture plates. The shape of the BMSCs was observed under inverted microscope. Quantitative cellular viability was evaluated using a Cell-Counting Kit-8 assay. The expression of stem cell surface markers was tested and a series of quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot was performed to evaluate the expression in each group. Result: The shapes of the cells at 20s, 30s, and 50s were similar to each other. No significant changes in cellular viability were noted among different age groups or sex groups. The BMSCs expressed CD44, CD73, and CD90 surface markers but did not express CD14 and CD34. There were no noticeable differences in CD surface markers among the different age groups. The expressions of CD surface markers were similar between men and women. No significant differences in the secretion of vascular endothelial growth factors (VEGFs) were noted at Day 3 between different age groups. qRT-PCR regarding the expression showed differences between the age groups. However, Western blot analysis showed a decrease in expression but did not reach statistical significance (P>0.05). Conclusion: This study clearly showed no significant differences in shape, cell viability, expression of stem cell surface markers, or secretion of human VEGF among different age groups. However, western blot analysis showed a tendency of age-related decrease which did not reach statistical significance. Collectively, autologous or allogeneic BMSCs should be meticulously applied to obtain optimal results regarding age and sex.

Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato

  • Sahin-Cevik, Mehtap;Sivri, Emine Dogus;Cevik, Bayram
    • The Plant Pathology Journal
    • /
    • 제35권3호
    • /
    • pp.257-273
    • /
    • 2019
  • Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining changes in the expression of tomato genes in response to ToCV infection in this study. A cDNA library enriched with genes induced in response to ToCV infection were constructed and 240 cDNAs were sequenced from this library. The macroarray analysis of 108 cDNAs revealed that the expression of 92 non-redundant tomato genes was induced by 1.5-fold or greater in response to ToCV infection. The majority of ToCV-induced genes identified in this study were associated with a variety of cellular functions including transcription, defense and defense signaling, metabolism, energy, transport facilitation, protein synthesis and fate and cellular biogenesis. Twenty ToCV-induced genes from different functional groups were selected and induction of 19 of these genes in response to ToCV infection was validated by RT-qPCR assay. Finally, the expression of 6 selected genes was analyzed in different stages of ToCV infection from 0 to 45 dpi. While the expression of three of these genes was only induced by ToCV infection, others were induced both by ToCV infection and wounding. The result showed that ToCV induced the basic defense response and activated the defense signaling in tomato plants at different stages of the infection. Functions of these defense related genes and their potential roles in disease development and resistance to ToCV are also discussed.

Hsa_Circ_0001947/MiR-661/DOK7 Axis Restrains Non-Small Cell Lung Cancer Development

  • Bao, Yuyan;Yu, Yanjie;Hong, Bing;Lin, Zhenjian;Qi, Guoli;Zhou, Jie;Liu, Kaiping;Zhang, Xiaomin
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1508-1518
    • /
    • 2021
  • Hsa_circ_0001947 is associated with multiple cancers, but its function in non-small cell lung cancer (NSCLC) is ambiguous and needs further research. The targeting relationship among circ_0001947, miR-661, and downstream of tyrosine kinase 7 (DOK7) was predicted by database and further verified by dual-luciferase reporter assay, while their expressions in cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). After transfection, cell biological behaviors and expressions of miRNAs, miR-661 and DOK7 were determined by cell function experiments and qRT-PCR, respectively. Circ_0001947 was low-expressed in NSCLC tissues and cells. Circ_0001947 knockdown intensified cell viability and proliferation, induced cell cycle arrest at S phase, suppressed apoptosis and evidently enhanced miR-510, miR-587, miR-661 and miR-942 levels, while circ_0001947 overexpression did the opposite. MiR-661 was a target gene of circ_0001947 that participated in the regulation of circ_0001947 on cell biological behaviors. Furthermore, DOK7, the target gene of miR-661, partly participated in the regulation of miR-661 on cell viability. Hsa_circ_0001947 acts as a sponge of miR-661 to repress NSCLC development by elevating the expression of DOK7.