Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.12.2018.0287

Identification and Expression Analysis of Genes Induced in Response to Tomato chlorosis virus Infection in Tomato  

Sahin-Cevik, Mehtap (Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology)
Sivri, Emine Dogus (Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Agricultural Biotechnology)
Cevik, Bayram (Isparta University of Applied Sciences, Faculty of Agricultural Sciences and Technologies, Department of Plant Protection)
Publication Information
The Plant Pathology Journal / v.35, no.3, 2019 , pp. 257-273 More about this Journal
Abstract
Tomato (Solanum lycopersicum) is one of the most widely grown and economically important vegetable crops in the world. Tomato chlorosis virus (ToCV) is one of the recently emerged viruses of tomato distributed worldwide. ToCV-tomato interaction was investigated at the molecular level for determining changes in the expression of tomato genes in response to ToCV infection in this study. A cDNA library enriched with genes induced in response to ToCV infection were constructed and 240 cDNAs were sequenced from this library. The macroarray analysis of 108 cDNAs revealed that the expression of 92 non-redundant tomato genes was induced by 1.5-fold or greater in response to ToCV infection. The majority of ToCV-induced genes identified in this study were associated with a variety of cellular functions including transcription, defense and defense signaling, metabolism, energy, transport facilitation, protein synthesis and fate and cellular biogenesis. Twenty ToCV-induced genes from different functional groups were selected and induction of 19 of these genes in response to ToCV infection was validated by RT-qPCR assay. Finally, the expression of 6 selected genes was analyzed in different stages of ToCV infection from 0 to 45 dpi. While the expression of three of these genes was only induced by ToCV infection, others were induced both by ToCV infection and wounding. The result showed that ToCV induced the basic defense response and activated the defense signaling in tomato plants at different stages of the infection. Functions of these defense related genes and their potential roles in disease development and resistance to ToCV are also discussed.
Keywords
Gene expression; host-pathogen interaction; macroarray; RT-qPCR; suppression subtractive hybridization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akdura, N. and Cevik, B. 2011. Molecular characterization and biological of Tomato chlorosis virus (ToCV) in tomato production areas in Western Mediterranean region. Ph.D. thesis. Suleyman Demirel University, Isparta, Turkey (in Turkish).
2 Alam, S. B. and Rochon, D. A. 2016. Cucumber necrosis virus recruits cellular heat shock protein 70 homologs at several stages of infection. J. Virol. 90:3302-3317.   DOI
3 Alfenas-Zerbini, P., Maia, I. G., Favaro, R. D., Cascardo, J. C., Brommonschenkel, S. H. and Zerbini, F. M. 2009. Genomewide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol. Plant-Microbe Interact. 22:352-361.   DOI
4 Sade, D., Shriki, O., Cuadros-Inostroza, A., Tohge, T., Semel, Y., Haviv, Y., Willmitzer, L., Fernie, A. R., Czosnek, H. and Brotman, Y. 2015. Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 11:81-97.   DOI
5 Sahin-Cevik, M. 2013. Identification and expression analysis of early cold-induced genes from cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Gene 512:536-545.   DOI
6 Sahin-Cevik, M. and Moore, G. A. 2006. Identification and expression analysis of cold regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Plant Mol. Biol. 62:83-97.   DOI
7 Sahin-Cevik, M., Cevik, B., Topkaya-Kutuk, B. and Yazici, K. 2017. Identification of drought-induced genes from the leaves of Rangpur lime (Citrus limon (L) Osbeck). J. Hortic. Sci. Biotechnol. 92:636-645.   DOI
8 Sahu, P. P., Rai, N. K., Chakraborty, S., Singh, M., Chandrappa, P. H., Ramesh, B., Chattopadhyay, D. and Prasad, M. 2010. Tomato cultivar tolerant to tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol. Plant Pathol. 11:531-544.   DOI
9 Karasev, A. V. 2000. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 38:293-324.   DOI
10 Kang, C. H., Jung, W. Y., Kang, Y. H., Kim, J. Y., Kim, D. G., Jeong, J. C., Baek, D. W., Jin, J. B., Lee, J. Y., Kim, M. O., Chung, W. S., Mengiste, T., Koiwa, H., Kwak, S. S., Bahk, J. D., Lee, S. Y., Nam, J. S., Yun, D. J. and Cho, M. J. 2006. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ. 13:84-95.   DOI
11 Kataya, A. R. A., Stavridou, E., Farhan, K. and Livieratos, I. C. 2008. Nucleotide sequence analysis and detection of a Greek isolate of Tomato chlorosis virus. Plant Pathol. 57:819-824.   DOI
12 Kawano, Y. and Shimamoto, K. 2013. Early signaling network in rice PRR-mediated and R-mediated immunity. Curr. Opin. Plant Biol. 16:496-504.   DOI
13 Kawano, Y., Kaneko-Kawano, T. and Shimamoto, K. 2014. Rho family GTPase-dependent immunity in plants and animals. Front. Plant Sci. 5:522.
14 Kong, F., Wang, J., Cheng, L., Liu, S., Wu, J., Peng, Z. and Lu, G. 2012. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum. Gene 499:108-120.   DOI
15 Dalmon, A., Fabre, F., Guilbaud, L., Lecoq, H. and Jacquemond, M. 2009. Comparative whitefly transmission of Tomato chlorosis virus and Tomato infectious chlorosis virus from single or mixed infections. Plant Pathol. 58:221-227.   DOI
16 Dolja, V. V., Kreuze, J. F. and Valkonen, J. P. 2006. Comparative and functional genomics of closteroviruses. Virus Res. 117:38-51.   DOI
17 Shahid, M. S., Kimbara, J., Onozato, A., Natsuaki, K. T. and Ikegami, M. 2015. Comparative analysis of gene expression of Ty-1 hybrid and non-hybrid tomatoes exposed to tomato yellow leaf curl virus strains. Aust. J. Crop Sci. 9:819-825.
18 Amaral, D. O. J., Almeida, C. M. A., Correia, M. T. S., Lima, V. L. M. and da Silva, M. V. 2012. Isolation and characterization of chitinase from tomato infected by Fusarium oxysporum f. sp. lycopersici. J. Phytopathol. 160:741-744.   DOI
19 Barbosa, J. C., Costa, H., Gioria, R. and Rezende, J. 2011. Occurrence of Tomato chlorosis virus in tomato crops in five Brazilian states. Trop. Plant Pathol. 36:256-258.
20 Sauter, M., Lorbiecke, R., Ouyang, B., Pochapsky, T. C. and Rzewuski, G. 2005. The immediate-early ethylene response gene OsARD1 encodes an acireductone dioxygenase involved in recycling of the ethylene precursor S-denosylmethionine. Plant J. 44:718-729.   DOI
21 Orfanidou, C. G., Dimitriou, C., Papayiannis, L. C., Maliogka, V. I. and Katis, N. I. 2014. Epidemiology and genetic diversity of criniviruses associated with tomato yellows disease in Greece. Virus Res. 186:120-129.   DOI
22 Lucioli, A., Perla, C., Berardi, A., Gatti, F., Spano, L. and Tavazza, M. 2016. Transcriptomics of tomato plants infected with TYLCSV or expressing the central TYLCSV Rep protein domain uncover changes impacting pathogen response and senescence. Plant Physiol. Biochem. 103:61-70.   DOI
23 Miozzi, L., Napoli, C., Sardo, L. and Accotto, G. P. 2014. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS One 9:e89951.   DOI
24 Moon, S. Y. and Zheng, Y. 2003. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13:13-22.   DOI
25 Freitas, D. M. S., Nardin, I., Shimoyama, N., Souza-Dias, J. A. C. and Rezende, J. A. M. 2012. First report of Tomato chlorosis virus in potato in Brazil. Plant Dis. 96:593.
26 Doukhanina, E. V., Chen, S., van der Zalm, E., Godzik, A., Reed, J. and Dickman, M. B. 2006. Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J. Biol. Chem. 281:18793-18801.   DOI
27 Dovas, C. I., Katis, N. I. and Avgelis, A. D. 2002. Multiplex detection of Criniviruses associated with epidemics of a yellowing disease of tomato in Greece. Plant Dis. 86:1345-1349.   DOI
28 Fortes, I. M. and Navas-Castillo, J. 2012. Potato, an experimental and natural host of the crinivirus Tomato chlorosis virus. Eur. J. Plant Pathol. 134:81-86.   DOI
29 Garcia-Cano, E., Navas-Castillo, J., Moriones, E. and Fernandez-Munoz, R. 2010. Resistance to Tomato chlorosis virus in wild tomato species that impair virus accumulation and disease symptom expression. Phytopathology 100:582-592.   DOI
30 Greeff, C., Roux, M., Mundy, J. and Petersen, M. 2012. Receptorlike kinase complexes in plant innate immunity. Front. Plant Sci. 3:209.   DOI
31 Hamid, R., Khan, M. A., Ahmad, M., Ahmad, M. M., Abdin, M. Z., Musarrat, J. and Javed, S. 2013. Chitinases: An update. J. Pharm. Bioallied Sci. 5:21-29.
32 Hanssen, I. M., Lapidot, M. and Thomma, B. P. 2010. Emerging viral diseases of tomato crops. Mol. Plant-Microbe Interact. 23:539-548.   DOI
33 Wisler, G. C., Duffus, J. E., Liu, H.-Y. and Li, R. H. 1998b. Ecology and epidemiology of whitefly-transmitted closteroviruses. Plant Dis. 82:270-280.   DOI
34 Wintermantel, W. M., Wisler, G. C., Anchieta, A. G., Liu, H. Y., Karasev, A. V. and Tzanetakis, I. E. 2005. The complete nucleotide sequence and genome organization of Tomato chlorosis virus. Arch. Virol. 150:2287-2298.   DOI
35 Wintermantel, W. M. and Wisler, G. C. 2006. Vector specificity, host range, and genetic diversity of Tomato chlorosis virus. Plant Dis. 90:814-819.   DOI
36 Wisler, G. C., Li, R. H., Liu, H. Y., Lowry, D. S. and Duffus, J. E. 1998a. Tomato chlorosis virus: A new whitefly-transmitted, phloem-limited bipartite. Phytopathology 88:402-409.   DOI
37 Yesilyurt, N. and Cevik, B. 2019. Genetic diversity and phylogenetic analyses of Tomato chlorosis virus isolates using the coat protein gene sequences. J. Plant Pathol. doi: 10.1007/s42161-019-00297-4 (in Press).   DOI
38 Shi, C., Ingvardsen, C., Thummler, F., Melchinger, A. E., Wenzel, G. and Lubberstedt, T. 2005. Identification by suppression subtractive hybridization of genes that are differentially expressed between near-isogenic maize lines in association with sugarcane mosaic virus resistance. Mol. Genet. Genomics 273:450-461.   DOI
39 Papayiannis, L. C., Harkou, I. S., Markou, Y. M., Demetriou, C. N. and Katis, N. I. 2011. Rapid discrimination of Tomato chlorosis virus, Tomato infectious chlorosis virus and co-amplification of plant internal control using real-time RT-PCR. J. Virol. Methods 176:53-59.   DOI
40 Orfanidou, C. G., Pappi, P. G., Efthimiou, K. E., Katis, N. I. and Maliogka, V. I. 2016. Transmission of Tomato chlorosis virus (ToCV) by Bemisia tabaci biotype Q and evaluation of four weed species as viral sources. Plant Dis. 100:2043-2049.   DOI
41 Papenbrock, J., Guretzki, S. and Henne, M. 2011. Latest news about the sulfurtransferase protein family of higher plants. Amino Acids 41:43-57.   DOI
42 Pompe-Novak, M., Gruden, K., Baebler, S., Krecic-Stres, H., Kovac, M., Jongsma, M. and Ravnikar, M. 2005. Potato virus Y induced changes in the gene expression of potato (Solanum tuberosum L.). Physiol. Mol. Plant Pathol. 67:237-247.   DOI
43 Vargas, J. A., Hernandez, E., Barboza, N., Mora, F. and Ramirez, P. 2011. First report of Tomato chlorosis virus infecting sweet pepper in Costa Rica. Plant Dis. 95:1482.
44 Bi, G., Zhou, Z., Wang, W., Li, L., Rao, S., Wu, Y., Zhang, X., Menke, F. L. H., Chen, S. and Zhou, J. M. 2018. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30:1543-1561.   DOI
45 Solorzano-Morales, A., Barboza, N., Hernandez, E., Mora-Umana, F., Ramirez, P. and Hammond, R. W. 2011. Newly discovered natural hosts of Tomato chlorosis virus in Costa Rica. Plant Dis. 95:497.
46 Tang, D., Wang, G. and Zhou, J. M. 2017. Receptor kinases in plant-pathogen interactions, more than pattern recognition. Plant Cell 29:618-637.   DOI
47 Trenado, H. P., Fortes, I. M., Louro, D. and Navas-Castillo, J. 2007. Physalis ixocarpa and P. peruviana, new natural hosts of Tomato chlorosis virus. Eur. J. Plant Pathol. 118:193-196.   DOI
48 Van de Poel, B. and Van Der Straeten, D. 2014. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants, more than just the precursor of ethylene! Front. Plant Sci. 5:640.
49 Virk, N., Liu, B., Zhang, H., Li, X., Zhang, Y., Li, D. and Song, F. 2012. Tomato SlMPK4 is required for resistance against Botrytis cinerea and tolerance to drought stress. Acta Physiol. Plant. 35:1211-1221.   DOI
50 Wang, J., Yu, W., Yang, Y., Li, X., Chen, T., Liu, T., Ma, N., Yang, X., Liu, R. and Zhang, B. 2015. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci. Rep. 5:16946.   DOI
51 Whitham, S. A., Quan, S., Chang, H. S., Cooper, B., Estes, B., Zhu, T., Wang, X. and Hou, Y. M. 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J. 33:271-283.   DOI
52 Catoni, M., Miozzi, L., Fiorilli, V., Lanfranco, L. and Accotto, G. P. 2009. Comparative analysis of expression profiles in shoots and roots of tomato systemically infected by Tomato spotted wilt virus reveals organ-specific transcriptional responses. Mol. Plant-Microbe Interact. 22:1504-1513.   DOI
53 Li, Y., Kabbage, M., Liu, W. and Dickman, M. B. 2016. Aspartyl protease-mediated cleavage of BAG6 is necessary for autophagy and fungal resistance in plants. Plant Cell 28:233-247.   DOI
54 Liu, Y., Wang, G., Wang, Z., Yang, F., Wu, G. and Hong, N. 2012. Identification of differentially expressed genes in response to infection of a mild Citrus tristeza virus isolate in Citrus aurantifolia by suppression subtractive hybridization. Sci. Hortic. 134:144-149.   DOI
55 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DDC(T)) Method. Methods 25:402-408.   DOI
56 Bol, J. F., Linthorst, H. J. M. and Cornelissen, B. J. C. 1990. Plant pathogenesis-related proteins induced by virus infection. Annu. Rev. Phytopathol. 28:113-138.   DOI
57 Burstenbinder, K., Rzewuski, G., Wirtz, M., Hell, R. and Sauter, M. 2007. The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J. 49:238-249.   DOI
58 Caplan, J. L., Mamillapalli, P., Burch-Smith, T. M., Czymmek, K. and Dinesh-Kumar, S. P. 2008. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449-462.   DOI
59 Cevik, B., Kivrak, H. and Sahin-Cevik, M. 2019. Development of a graft inoculation method and a real-time RT-PCR assay for monitoring Tomato chlorosis virus infection in tomato. J. Virol. Methods 265:1-8.   DOI
60 Sade, D., Eybishtz, A., Gorovits, R., Sobol, I. and Czosnek, H. 2012. A developmentally regulated lipocalin-like gene is overexpressed in tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance. Plant Mol. Biol. 80:273-287.   DOI
61 Levesque-Tremblay, G., Havaux, M. and Ouellet, F. 2009. The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. Plant J. 60:691-702.   DOI
62 Louro, D., Accotto, G. P. and Vaira, A. M. 2000. Occurrence and diagnosis of Tomato chlorosis virus in Portugal. Eur. J. Plant Pathol. 106:589-592.   DOI
63 Lozano, G., Moriones, E. and Navas-Castillo, J. 2004. First report of sweet pepper (Capsicum annuum) as a natural host plant for Tomato chlorosis virus. Plant Dis. 88:224.
64 Lu, J., Du, Z. X., Kong, J., Chen, L. N., Qiu, Y. H., Li, G. F., Meng, X. H. and Zhu, S. F. 2012. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development. PLoS One 7:e43447.   DOI
65 Hanssen, I. M., van Esse, H. P., Ballester, A. R., Hogewoning, S. W., Parra, N. O., Paeleman, A., Lievens, B., Bovy, A. G. and Thomma, B. P. 2011. Differential tomato transcriptomic responses induced by pepino mosaic virus isolates with differential aggressiveness. Plant Physiol. 156:301-318.   DOI
66 Li, X., Zhang, Y., Huang, L., Ouyang, Z., Hong, Y., Zhang, H., Li, D. and Song, F. 2014. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol. 14:166.   DOI
67 Afzal, A. J., Wood, A. J. and Lightfoot, D. A. 2008. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol. Plant-Microbe Interact. 21:507-517.   DOI
68 Chen, T., Lv, Y., Zhao, T., Li, N., Yang, Y., Yu, W., He, X., Liu, T. and Zhang, B. 2013. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One 8:e80816.   DOI
69 Cipollone, R., Ascenzi, P. and Visca, P. 2007. Common themes and variations in the rhodanese superfamily. IUBMB Life 59:51-59.   DOI
70 Abeles, F. B. M., Morgan, P. W. and Saltveit, M. E. 1992. Ethylene in plant biology. 2nd ed. Academic Press, San Diego, CA, USA. 414 pp.
71 Jacquemond, M., Verdin, E., Dalmon, A., Guilbaud, L. and Gognalons, P. 2009. Serological and molecular detection of Tomato chlorosis virus and Tomato infectious chlorosis virus in tomato. Plant Pathol. 58:210-220.   DOI
72 Hanssen, I. M. and Lapidot, M. 2012. Major tomato viruses in the Mediterranean basin. Adv. Virus Res. 84:31-66.   DOI