Browse > Article
http://dx.doi.org/10.14348/molcells.2022.2037

RhoBTB3 Regulates Proliferation and Invasion of Breast Cancer Cells via Col1a1  

Kim, Kyungho (Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center)
Kim, Youn-Jae (Targeted Therapy Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center)
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide, despite medical and technological advancements. The RhoBTB family consists of three isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. RhoBTB1 and RhoBTB2 have been proposed as tumor suppressors in breast cancer. However, the roles of RhoBTB3 proteins are unknown in breast cancer. Bioinformatics analysis, including Oncomine, cBioportal, was used to evaluate the potential functions and prognostic values of RhoBTB3 and Col1a1 in breast cancer. qRT-PCR analysis and immunoblotting assay were performed to investigate relevant expression. Functional experiments including proliferation assay, invasion assay, and flow cytometry assay were conducted to determine the role of RhoBTB3 and Col1a1 in breast cancer cells. RhoBTB3 mRNA levels were significantly up-regulated in breast cancer tissues as compared to in adjacent normal tissues. Moreover, RhoBTB3 expression was found to be associated with Col1a1 expression. Decreasing RhoBTB3 expression may lead to decreases in the proliferative and invasive properties of breast cancer cells. Further, Col1a1 knockdown in breast cancer cells limited the proliferative and invasive ability of cancer cells. Knockdown of RhoBTB3 may exert inhibit the proliferation, migration, and metastasis of breast cancer cells by repressing the expression of Col1a1, providing a novel therapeutic strategy for treating breast cancer.
Keywords
Col1a1; human breast cancer; RhoBTB3;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Manolaridis, I., Kulkarni, K., Dodd, R.B., Ogasawara, S., Zhang, Z., Bineva, G., Reilly, N.O., Hanrahan, S.J., Thompson, A.J., Cronin, N., et al. (2013). Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504, 301-305.   DOI
2 Ma, H.P., Chang, H.L., Bamodu, O.A., Yadav, V.K., Huang, T.Y., Wu, A.T.H., Yeh, C.T., Tsai, S.H., and Lee, W.H. (2019). Collagen 1A1 (COL1A1) is a reliable biomarker and putative therapeutic target for hepatocellular carcinogenesis and metastasis. Cancers (Basel) 11, 786.
3 Anastasiadi, Z., Lianos, G.D., Ignatiadou, E., Harissis, H.V., and Mitsis, M. (2017). Breast cancer in young women: an overview. Updates Surg. 69, 313-317.   DOI
4 Berthold, J., Schenkova, K., Ramos, S., Miura, Y., Furukawa, M., Aspenstrom, P., and Rivero, F. (2008a). Characterization of RhoBTB-dependent Cul3 ubiquitin ligase complexes--evidence for an autoregulatory mechanism. Exp. Cell Res. 314, 3453-3465.   DOI
5 Martins Cavaco, A.C., Damaso, S., Casimiro, S., and Costa, L. (2020). Collagen biology making inroads into prognosis and treatment of cancer progression and metastasis. Cancer Metastasis Rev. 39, 603-623.   DOI
6 Mysior, M.M. and Simpson, J.C. (2021). Emerging roles for Rho GTPases operating at the Golgi complex. Small GTPases 12, 311-322.   DOI
7 Nguyen, T.H., Ralbovska, A., and Kugler, J.M. (2020). RhoBTB proteins regulate the Hippo pathway by antagonizing ubiquitination of LKB1. G3 (Bethesda) 10, 1319-1325.   DOI
8 Nissen, N.I., Karsdal, M., and Willumsen, N. (2019). Collagens and Cancer associated fibroblasts in the reactive stroma and its relation to Cancer biology. J. Exp. Clin. Cancer Res. 38, 115.
9 Odle, T.G. (2017). Precision medicine in breast cancer. Radiol. Technol. 88, 401M-421M.
10 Pucci-Minafra, I., Albanese, N.N., Di Cara, G., Minafra, L., Marabeti, M.R., and Cancemi, P. (2008). Breast cancer cells exhibit selective modulation induced by different collagen substrates. Connect. Tissue Res. 49, 252-256.   DOI
11 Reichheld, J.P., Vernoux, T., Lardon, F., Van Montagu, M., and Inze, D. (1999). Specific checkpoints regulate plant cell cycle progression in response to oxidative stress. Plant J. 17, 647-656.   DOI
12 Burns-Cox, N., Avery, N.C., Gingell, J.C., and Bailey, A.J. (2001). Changes in collagen metabolism in prostate cancer: a host response that may alter progression. J. Urol. 166, 1698-1701.   DOI
13 Li, J., Ding, Y., and Li, A. (2016). Identification of COL1A1 and COL1A2 as candidate prognostic factors in gastric cancer. World J Surg Oncol 14, 297.
14 Liu, J., Shen, J.X., Wu, H.T., Li, X.L., Wen, X.F., Du, C.W., and Zhang, G.J. (2018). Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov. Med. 25, 211-223.
15 Cao, H., Thompson, H., Krueger, E., and McNiven, M. (2000). Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J. Cell Sci. 113, 1993-2002.   DOI
16 Colanzi, A., Carcedo, C.H., Persico, A., Cericola, C., Turacchio, G., Bonazzi, M., Luini, A., and Corda, D. (2007). The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J. 26, 2465-2476.   DOI
17 Cancer Genome Atlas Network (2012). Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70.   DOI
18 Chen, D., Chen, G., Jiang, W., Fu, M., Liu, W., Sui, J., Xu, S., Liu, Z., Zheng, X., Chi, L., et al. (2019). Association of the collagen signature in the tumor microenvironment with lymph node metastasis in early gastric cancer. JAMA Surg. 154, e185249.
19 Choi, Y.M., Kim, K.B., Lee, J.H., Chun, Y.K., An, I.S., An, S., and Bae, S. (2017). DBC2/RhoBTB2 functions as a tumor suppressor protein via Musashi-2 ubiquitination in breast cancer. Oncogene 36, 2802-2812.   DOI
20 Desreux, J.A.C. (2018). Breast cancer screening in young women. Eur. J. Obstet. Gynecol. Reprod. Biol. 230, 208-211.   DOI
21 Junaid, M., Muhseen, Z.T., Ullah, A., Wadood, A., Liu, J., and Zhang, H. (2014). Molecular modeling and molecular dynamics simulation study of the human Rab9 and RhoBTB3 C-terminus complex. Bioinformation 10, 757-763.   DOI
22 Koh, E.Y., You, J.E., Jung, S.H., and Kim, P.H. (2020). Biological functions and identification of novel biomarker expressed on the surface of breast cancer-derived cancer stem cells via proteomic analysis. Mol. Cells 43, 384-396.
23 Lu, A. and Pfeffer, S.R. (2013). Golgi-associated RhoBTB3 targets cyclin E for ubiquitylation and promotes cell cycle progression. J. Cell Biol. 203, 233-250.   DOI
24 Shi, Y., Duan, Z., Zhang, X., Zhang, X., Wang, G., and Li, F. (2019). Down-regulation of the let-7i facilitates gastric cancer invasion and metastasis by targeting COL1A1. Protein Cell 10, 143-148.   DOI
25 Siwik, D.A., Pagano, P.J., and Colucci, W.S. (2001). Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 280, C53-C60.   DOI
26 Slocum, E. and Germain, D. (2019). Collagen and PAPP-A in the etiology of postpartum breast cancer. Horm. Cancer 10, 137-144.   DOI
27 St-Pierre, B., Jiang, Z., Egan, S.E., and Zacksenhaus, E. (2004). High expression during neurogenesis but not mammogenesis of a murine homologue of the Deleted in Breast Cancer2/Rhobtb2 tumor suppressor. Gene Expr. Patterns 5, 245-251.   DOI
28 Taniguchi, M. and Yoshida, H. (2017). TFE3, HSP47, and CREB3 pathways of the mammalian Golgi stress response. Cell Struct. Funct. 42, 27-36.   DOI
29 Burrows, J.F., Kelvin, A.A., McFarlane, C., Burden, R.E., McGrattan, M.J., De la Vega, M., Govender, U., Quinn, D.J., Dib, K., Gadina, M., et al. (2009). USP17 regulates Ras activation and cell proliferation by blocking RCE1 activity. J. Biol. Chem. 284, 9587-9595.   DOI
30 Waks, A.G. and Winer, E.P. (2019). Breast cancer treatment: a review. JAMA 321, 288-300.   DOI
31 Woldu, S.L., Hutchinson, R.C., Krabbe, L.M., Sanli, O., and Margulis, V. (2018). The Rho GTPase signalling pathway in urothelial carcinoma. Nat. Rev. Urol. 15, 83-91.   DOI
32 Wolf, K., Alexander, S., Schacht, V., Coussens, L.M., von Andrian, U.H., van Rheenen, J., Deryugina, E., and Friedl, P. (2009). Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20, 931-941.   DOI
33 Xu, S., Xu, H., Wang, W., Li, S., Li, H., Li, T., Zhang, W., Yu, X., and Liu, L. (2019). The role of collagen in cancer: from bench to bedside. J. Transl. Med. 17, 309.
34 Akkari, Y.M., Bateman, R.L., Reifsteck, C.A., Olson, S.B., and Grompe, M. (2000). DNA replication is required to elicit cellular responses to psoralen- induced DNA interstrand cross-links. Mol. Cell. Biol. 20, 8283-8289.   DOI
35 Aspenstrom, P., Fransson, A., and Saras, J. (2004). Rho GTPases have diverse effects on the organization of the actin filament system. Biochem. J. 377, 327-337.   DOI
36 Aspenstrom, P., Ruusala, A., and Pacholsky, D. (2007). Taking Rho GTPases to the next level: the cellular functions of atypical Rho GTPases. Exp. Cell Res. 313, 3673-3679.   DOI
37 Berthold, J., Schenkova, K., and Rivero, F. (2008b). Rho GTPases of the RhoBTB subfamily and tumorigenesis. Acta Pharmacol. Sin. 29, 285-295.   DOI
38 Boudhraa, Z., Carmona, E., Provencher, D., and Mes-Masson, A.M. (2020). Ran GTPase: a key player in tumor progression and metastasis. Front. Cell Dev. Biol. 8, 345.
39 Dudley, D.T., Li, X.Y., Hu, C.Y., Kleer, C.G., Willis, A.L., and Weiss, S.J. (2014). A 3D matrix platform for the rapid generation of therapeutic anti-human carcinoma monoclonal antibodies. Proc. Natl. Acad. Sci. U. S. A. 111, 14882-14887.   DOI
40 Espinosa, E.J., Calero, M., Sridevi, K., and Pfeffer, S.R. (2009). RhoBTB3: a Rho GTPase-family ATPase required for endosome to Golgi transport. Cell 137, 938-948.   DOI
41 Fang, S., Dai, Y., Mei, Y., Yang, M., Hu, L., Yang, H., Guan, X., and Li, J. (2019). Clinical significance and biological role of cancer-derived Type I collagen in lung and esophageal cancers. Thorac. Cancer 10, 277-288.   DOI
42 Gurel, P.S., Hatch, A.L., and Higgs, H.N. (2014). Connecting the cytoskeleton to the endoplasmic reticulum and Golgi. Curr. Biol. 24, R660-R672.   DOI
43 Harbeck, N. and Gnant, M. (2017). Breast cancer. Lancet 389, 1134-1150.   DOI
44 Jafari, S.H., Saadatpour, Z., Salmaninejad, A., Momeni, F., Mokhtari, M., Nahand, J.S., Rahmati, M., Mirzaei, H., and Kianmehr, M. (2018). Breast cancer diagnosis: imaging techniques and biochemical markers. J. Cell. Physiol. 233, 5200-5213.   DOI
45 Ji, W. and Rivero, F. (2016). Atypical Rho GTPases of the RhoBTB subfamily: roles in vesicle trafficking and tumorigenesis. Cells 5, 28.
46 Laurent, G. (1987). Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am. J. Physiol. 252 (1 Pt 1), C1-C9.   DOI
47 Machamer, C.E. (2015). The Golgi complex in stress and death. Front. Neurosci. 9, 421.
48 McKinnon, C.M. and Mellor, H. (2017). The tumor suppressor RhoBTB1 controls Golgi integrity and breast cancer cell invasion through METTL7B. BMC Cancer 17, 145.
49 Zhang, C.S., Liu, Q., Li, M., Lin, S.Y., Peng, Y., Wu, D., Li, T.Y., Fu, Q., Jia, W., Wang, X., et al. (2015). RHOBTB3 promotes proteasomal degradation of HIFα through facilitating hydroxylation and suppresses the Warburg effect. Cell Res. 25, 1025-1042.   DOI
50 Zhang, Z., Wang, Y., Zhang, J., Zhong, J., and Yang, R. (2018). COL1A1 promotes metastasis in colorectal cancer by regulating the WNT/PCP pathway. Mol. Med. Rep. 17, 5037-5042.
51 Zhu, J., Xiong, G., Fu, H., Evers, B.M., Zhou, B.P., and Xu, R. (2015). Chaperone Hsp47 drives malignant growth and invasion by modulating an ECM gene network. Cancer Res. 75, 1580-1591.
52 Liu, T., Ye, P., Ye, Y., Lu, S., and Han, B. (2020). Circular RNA hsa_circRNA_002178 silencing retards breast cancer progression via microRNA-328-3p-mediated inhibition of COL1A1. J. Cell. Mol. Med. 24, 2189-2201.   DOI