• Title/Summary/Keyword: RT(Reverberation-Time)

Search Result 25, Processing Time 0.051 seconds

Using reverberation time to evaluate the amount of scattered sound energy from a tree (잔향시간지표를 이용한 나무의 음향확산성 평가)

  • Yang, Hong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.141-144
    • /
    • 2014
  • In urban spaces surrounded by buildings, trees could disperse sound energy, which affect sound level distribution and street canyon reverberation. Therefore, this paper examines the amount of scattered sound energy from a tree in open field by means of a reverberation time (RT). Five trees of different species and crown sizes were considered. The influential factors include crown size and shape, foliage condition, and source-receiver distance. The results show that RT is proportionally increased with the increase of tree crown sizes, which is the most determining factor. The maximum RT measured was 0.34 sec at 4000 Hz for the studied trees in leaf. The presence of leaves increased RT at high frequencies, typically by 0.14 sec at 4000 Hz. With increasing source-receiver distance within 40 m, RT was slightly changed.

  • PDF

Analysis of the Factors affecting Reverberation Time in Small Room (소규모 공간에서의 잔향시간 영향요인 분석)

  • Kim, Myung-Jun;Lee, Byoung-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.492-497
    • /
    • 2006
  • This study gives the results of the measurements and analysises of the reverberation times in a small room such as apartment houses. We measured the RT by changing measurement conditions, which were sound sources. sound source's positions, receiving point & height, sampling time and so on. The critical factor affecting reverberation time was sound source in unoccupied houses and the reverberation time differences between result of RT using impulsive and interrupted sound source was 0.3sec at 500Hz frequency. And the difference of RT due to sound sources affected the sound insulation such as apparent sound reduction index and sound level difference about 1dB at each frequency in unoccupied houses.

  • PDF

Effect of the measurement error of reverberation time on the STL (잔향시간 측정 오차의 차음손실에 대한 영향)

  • 신성환;이정권;강현주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1099-1103
    • /
    • 2001
  • In room acoustics, reverberation time (RT) is the most important and general factor that represents character of room or inner space. However, RT, especially in low frequency range, can have the different value according to the measuring points and methods. This study comprehends the cause of error occurring dominantly in low frequency range when RT is measured and examines that the each error of RT measured in the cabin and reverberation chamber having different properties, influences what extent on sound transmission loss (STL)

  • PDF

An empirical method to determine a reverberation time in outdoor spaces of apartment complexes (아파트 단지 잔향시간 특성 및 예측 경험식 제안)

  • Yang, Hong-Seok;Kim, Myung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.880-884
    • /
    • 2014
  • RT (reverberation time) of outdoor spaces surrounded by multi-storey buildings depends on many designable factors such as the openness, volume and building layouts, etc. This study therefore aims to clarify the influential factors for RT in outdoor spaces surrounded by buildings with complicated topographical conditions. A series of measurements were carried out for 15 outdoor spaces in 6 apartment complexes with different building layouts. An Empirical method considering the openness, averaged ray length and building high is also suggested, to predict RT approximately in the outdoor spaces. The overall results suggest that RT in outdoor spaces of apartment complexes is significantly influenced by source-receiver distance and building layouts.

  • PDF

Indoor Scene Classification based on Color and Depth Images for Automated Reverberation Sound Editing (자동 잔향 편집을 위한 컬러 및 깊이 정보 기반 실내 장면 분류)

  • Jeong, Min-Heuk;Yu, Yong-Hyun;Park, Sung-Jun;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.384-390
    • /
    • 2020
  • The reverberation effect on the sound when producing movies or VR contents is a very important factor in the realism and liveliness. The reverberation time depending the space is recommended in a standard called RT60(Reverberation Time 60 dB). In this paper, we propose a scene recognition technique for automatic reverberation editing. To this end, we devised a classification model that independently trains color images and predicted depth images in the same model. Indoor scene classification is limited only by training color information because of the similarity of internal structure. Deep learning based depth information extraction technology is used to use spatial depth information. Based on RT60, 10 scene classes were constructed and model training and evaluation were conducted. Finally, the proposed SCR + DNet (Scene Classification for Reverb + Depth Net) classifier achieves higher performance than conventional CNN classifiers with 92.4% accuracy.

A Novel Approach for Blind Estimation of Reverberation Time using Gamma Distribution Model

  • Hamza, Amad;Jan, Tariqullah;Jehangir, Asiya;Shah, Waqar;Zafar, Haseeb;Asif, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.529-536
    • /
    • 2016
  • In this paper we proposed an unsupervised algorithm to estimate the reverberation time (RT) directly from the reverberant speech signal. For estimation process we use maximum likelihood estimation (MLE) which is a very well-known and state of the art method for estimation in the field of signal processing. All existing RT estimation methods are based on the decay rate distribution. The decay rate can be obtained either from the energy envelop decay curve analysis of noise source when it is switch off or from decay curve of impulse response of an enclosure. The analysis of a pre-existing method of reverberation time estimation is the foundation of the proposed method. In one of the state of the art method, the reverberation decay is modeled as a Laplacian distribution. In this paper, the proposed method models the reverberation decay as a Gamma distribution along with the unification of an effective technique for spotting free decay in reverberant speech. Maximum likelihood estimation technique is then used to estimate the RT from the free decays. The method was motivated by our observation that the RT of a reverberant signal when falls in specific range, then the decay rate of the signal follows Gamma distribution. Experiments are carried out on different reverberant speech signal to measure the accuracy of the suggested method. The experimental results reveal that the proposed method performs better and the accuracy is high in comparison to the state of the art method.

The Acoustic Character of Classroom as Using Microphone (마이크 사용시 강의실내의 음향특성)

  • 이채봉;강대기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.786-790
    • /
    • 2003
  • The purpose of this research is to observe that the acoustic characters of classroom have some difference by several conditions. TSP has used to measure impulse response and such physical indexes as RT(Reverberation Time), D$\sub$50/, and STI(Speech-Transmission-Index) are computed by it. we investigate difference under some conditions such as when students were present at each classroom and when was not so, and when professor used a microphone and unused it. In this study, we found that reverberation time when people take a seat is lower than was not so. we wish to help one who work for construction industry, as they build a kind of classroom

  • PDF

Comparison of Acoustic Performance Depending on the Location of Sound Absorptive and Diffuser in Small Auditoriums Using 1/10 Scale Models (1/10 축소모형을 이용한 소공연장의 흡음재와 확산체의 적용위치에 따른 음향성능 비교)

  • Kim, Tae-Hee;Park, Chan-Jae;Park, Ji-Hoon;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.146-156
    • /
    • 2015
  • This study investigated how the location of sound absorptive materials and sound diffusers affects the acoustic performance of small auditoriums. It was conducted for a standard model established with the averaged dimension of 36 auditoriums which had opened since 2000 in Daehak-ro, Seoul. In this study, the installation area of finishing materials was calculated upon a back wall which had the smallest installation effective area of finishing materials. To analyze the changes of acoustic performance according to installation location of finishing materials, experiments were carried out using the 1/10 down scale models for 8 cases which were made by classifying the installation location of ceiling and side wall into the front, middle and rear part.The used acoustic parameters were reverberation time (RT), early decay time (EDT), clarity (C80), definition (D50) and speech transmission index (STI). In result, the index related to the amount of reverberant sound (RT, EDT) showed the great changes when evaluating it through just noticeable difference (JND), but the one related to clarity (C80, D50, STI) hardly indicated the changes. In case to obtain short reverberation time, it was most effective to control reverberation time through the side walls when installing sound absorptive and diffusive materials, and side wall front was the location which could get the shortest reverberation time.

Room Acoustic Measurement System Using Impulse Response (임펄스응답을 이용한 실내음향 측정 시스템)

    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.63-67
    • /
    • 1999
  • Recently, a method of measuring impulse response is widely used for a room acoustic evaluation instead of measuring reverberation time by white noise excitation. Comparing with the traditional reverberation time measurement, this method has many advantages such as good repeatability and the ability to extract various room acoustic parameters at one measurement. In this study, the author developed a measuring system that can extract mono-aural room acoustic parameters from an impulse response measured with MLS (Maximum Length Sequence) signal excitation. These room acoustic parameters include reverberation times(EDT, RT), speech intelligibilities(C50, C80, D, U50, U80, AI) and sound strength(G). This paper introduces the configuration of the developed measuring system, test results and discussions for the measurements at several rooms.

  • PDF

A Study of Enemy Aptitude of Pistol Sound Source for Space Estimation (공간평가를 위한 피스톨음원의 적정성에 관한 연구)

  • Shon, Jang-Ryul;Kim, Jung-Joong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.320-328
    • /
    • 2005
  • Last target of architectural acoustics is that people wish to convey voice effectively from the space adaptively in use purpose in building. But, how exactly through space sound (sound source) that wish to deliver from indoor can be passed method to do quantification and evaluate quantity of sound by method to serve indoor architectural acoustics estimation summer period and methods to estimate definition propose. This Study searches special quality of sound source about MLS signal that is occurred short-answer sound source (pistol sound source) and nondirectional speaker among indoor sound estimation method, and measure and analyzed reverberation time (RT60), definition (C80, D50) by regulation of each ISO 3382 in age place (classroom, hall, gymnasium). Analysis result and sound factor among could know that d of two sound sources converges in measurement error extent about reverberation time (RT60) of analysis incidental and sound factors and value shows change irregularly about sound factor of D50, C80, pistol sound source judged there is problem. Also, could know that problem is happened in deflection except reverberation time is in deflection analysis with wave that measure each in fixed distance in branch. Finally, when differ size of sound source and measure about change of sound pressure level in case measure sound pressure level giving difference about 10 dB, sound factor could know that there is no different effect.