• Title/Summary/Keyword: RSIV

Search Result 30, Processing Time 0.02 seconds

Detection of RSIV (Red Sea Bream Iridovirus) in the Cultured Marine Fish by the Polymerase Chain Reaction (중합효소연쇄반응 (Polymerase Chain Reaction, PCR)법을 이용한 남해안 양식 해산어의 Red Sea Bream Iridovirus (RSIV) 보유상황 확인)

  • Oh, Myung-Joo;Jung, Sung-Ju;Kim, Young-Jin
    • Journal of fish pathology
    • /
    • v.12 no.1
    • /
    • pp.66-69
    • /
    • 1999
  • Occurrences of red sea bream iridovirus disease (RSIVD) in cultured marine fishes were investigated. The infection was detected by the polymerase chain reaction (PCR) used to amplify the red sea bream iridovirus (RSIV). The RSIV infection was widely distributed in fish culture farm around the south coastal area of the Korean peninsula.

  • PDF

Phylogenetic analysis and antigenic determinant prediction of red sea bream iridovirus isolated in Korea from 2019 to 2023 (2019년부터 2023년까지 국내에서 분리된 참돔이리도바이러스의 계통 분류 및 항원 결정기 예측)

  • Guk Hyun Kim;Joon Gyu Min;Hyun Do Jeong;Kwang Il Kim
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.25-36
    • /
    • 2024
  • In this study, we analyzed the phylogenetic classification, epitope prediction, and pathogenicity of red sea bream iridovirus (RSIV) isolated from rock bream between 2019 and 2023. Phylogenetics based on genes encoding MCP and ATPase indicated that all five RSIV isolates belonged to RSIV subtype II. The deduced amino acid sequence of the MCP for the amplicons (1362 bp) obtained from RSIV isolates had a length of 453 amino acids. Among these, the amino acid sequences of the RSIV-19, 21, 22, and 23 isolates showed 100% identity, while the RSIV-20 isolate showed 99.78% identity with one residue difference at position 306. As a result of antigenicity analysis based on amino acid sequence, the antigenicity score of the RSIV-20 isolate was 0.6386 and the other RSIV isolates were 0.6365. Additionally, the prediction of their antigenic determinants resulted in a total of 17 identical antigenic plots. When each RSIV was inoculated into rock bream, no significant differences were observed with 100% cumulative mortality in all groups. This study provides data on the potential for genetic variation of RSIV isolated in the same marine area over the past five years, and the antigenicity and pathogenicity results of each isolate are expected to be useful information for selecting future vaccine strains.

Detection of Red Sea Bream Iridovirus (RSIV) from marine fish in the Southern Coastal Area and East China Sea (남.서해안과 동중국해 자연산 어류에서 Red Sea Bream Iridovirus (RSIV)의 검출)

  • Lee, Wol-La;Kim, Seok-Ryel;Yun, Hyun-Mi;Kitamura, Shin Ichi;Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.20 no.3
    • /
    • pp.211-220
    • /
    • 2007
  • Red sea bream iridovirus disease (RSIVD) cause massive economic losses in marine aquaculture industry in Korea. The causative agent of this disease (RSIV) infects a wide range of fish species. The aims of this study were to monitor RSIV in wild marine fishes and to give critical information for controling the disease through prophylactic methods. Prevalence of the viral disease, geological distribution and reservoir of the virus were investigated using wild marine fishes captured in southern coast and east china sea for two years. (Polymerase Chain Reaction) PCR results showed that RSIV were detected in 39 (24.3%) out of 160 fish. MCP gene sequences of viral strains isolated in this study were closely related to that of a reference strain, red seabream-K, belonging to Megalocytivirus subgroup Ⅲ. The results suggest that some of wild marine fishes are RSIV carriers and may spread the pathogen directly to fish farmed in coastal area.

Genetic relatedness of Megalocytivirus from diseased fishes in Korea (국내 어류에서 분리된 Megalocytivirus의 유전형 분류 및 상관관계 분석)

  • Lee, Eun Sun;Cho, Miyoung;Min, Eun Young;Jung, Sung Hee;Kim, Kwang Il
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • In this study, we collected 39 megalocytiviruses isolated from diseased fish in Korea from 2012 to 2018. Major capsid protein (MCP) gene, a part of vascular endothelial growth factor (VEGF) gene and histidine triad motif-like protein (HIT) genes of Megalocytivirus were targeted for PCR amplification and analysis of those DNA nucleotide sequences. Korean strains revealed two genotypes (red sea bream iridovirus and turbot reddish body iridovirus types) based on the phylogeny of MCP gene. The red sea bream iridovirus type (RSIV-type) megalocytiviruses were divided into RSIV-subgroup 1 and 2. From the phylogenetic analysis of the VEGF genes, a genotypic variant of RSIV-type Megalocytivirus was identified. The HIT-like protein gene was detected in RSIVs, but not in TBRIV and ISKNV, suggesting that HIT-like protein gene may be specific in RSIV.

Expression of the red sea bream iridovirus (RSIV) capsid protein using a yeast surface display method (효모표면표출(YSD) 기법을 이용한 참돔 이리도바이러스(RSIV) 외피단백질의 발현)

  • Suh, Sung-Suk;Park, Mirye;Hwang, Jinik;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5412-5418
    • /
    • 2014
  • The red seabream iridovirus (RSIV), which belongs to the iridoviridae, causes infectious fish diseases in many Asian countries, leading to considerable economic losses to the aquaculture industry. Using the yeast surface display (YSD) technique, a new experimental system was recently developed for the detection and identification of a variety of marine viruses. In this study, a coat protein gene of RSIV was synthesized based on the nucleotide sequence database and subcloned into the yeast expression vector, pCTCON2. The expression of viral coat proteins in the yeast strain, EBY100, was detected by flow cytometry and Western blot analysis. Finally, they were isolated from the yeast surface through a treatment with ${\beta}$-mercaptoethanol. The data suggests that the YSD system can be a useful method for acquiring coating proteins of marine viruses.

Development of DNA Vaccine Against Red Sea Bream Iridovirus (RSIV)

  • PARK SO-JIN;SEO HYO-JIN;SON JEONG HWA;KIM HYOUNG-JUN;KIM YUN-IM;KIM KI-HONG;NAM YOON-KWON;KIM SUNG-KOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.873-879
    • /
    • 2005
  • Red sea bream iridovirus (RSIV) obtained from infected rock bream was propagated by Bluegill fry-2 (BF-2) cell culture. The virus titer was determined as $10^{5.5}\;TCID_{50}/ml$ on confluent BF-2 cell monolayers. The integrin binding site of ORF 055L of infectious spleen and kidney necrosis virus (ISKNV) was selected for the construction of a primer to obtain the RSIV ORF 055L gene. The genes were amplified using RSIV gene lyzate by PCR. The homologies of the ORF 055L sequence of RSIV with ISKNV and rock bream iridovirus (RBIV) were approximately $96\%$ and $100\%$, respectively. DNA vaccine was constructed by cloning the ORF 055L of RSN into pcDNA 3.1 (+), containing a cytomegalovirus (CMV) promoter. For antibody production, pcDNA-055 DNA vaccine was injected to BALB/c mice. The production of antibodies against pcDNA-055 DNA vaccine was confirmed by the Western blot analysis. The antibodies produced by the pcDNA-055 DNA vaccine showed efficacy to neutralize the RSIV in the neutralization test in BF-2 cell culture.

Cumulative Mortality in Striped Beakperch, Oplegnathus fasciatus Infected with Red Sea Bream Iridovirus (RSIV) at Different Water Temperature and Identification of Heat Shock Protein 70 (수온별 Red Sea Bream Iridovirus (RSIV) 인위감염에 따른 돌돔의 누적폐사 및 Heat Shock Protein (HSP) 70의 동정)

  • Kim, Seok-Ryel;Jeong, Byeong-Mun;Jung, Sung-Ju;Kitamura, Shin-Ichi;Kim, Du-woon;Kim, Do-Hyung;Oh, Myung-Joo
    • Journal of fish pathology
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • This study evaluates the pathogenicity in striped beakperch, Oplegnathus fasciatus infected with red sea bream iridovirus (RSIV) at different water temperature (17°C, 20°C, 25°C and 27°C). When the fish group was infected with RSIV at 17°C and 20°C, cumulative mortality did not show any significant difference with control group. In contrast, the case at 25°C and 27°C, cumulative mortality reached more than 80%. However, RSIV was detected from all of the fish in each temperature. To confirm a relationship between temperature change and heat shock protein (HSP), partial HSP70 cDNA was isolated from striped beakperch.

Experimental transmission of red sea bream iridovirus (RSIV) between rock bream (Oplegnathus fasciatus) and rockfish (Sebastes schlegelii)

  • Min, Joon Gyu;Jeong, Ye Jin;Jeong, Min A;Kim, Jae-Ok;Hwang, Jee Youn;Kwon, Mun-Gyeong;Kim, Kwang Il
    • Journal of fish pathology
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Red sea bream iridovirus (RSIV), belonging to the genus Megalocytivirus, is the predominant cause of mortality in marine fishes in Korea, including rock bream (Oplegnathus fasciatus). Rockfish (Sebastes schlegelii) are the host fish for RSIV, exhibiting no clinical signs or mortality. Cohabitation challenges, which mimicked natural transmission conditions, were performed to evaluate viral transmission between rock bream and rockfish, and to determine the pathogenicity and viral loads. In cohabitation challenge, artificially RSIV-infected rock bream were the viral donor, and healthy rockfish were the recipient. The results showed that although the donor rock bream had 95-100 % cumulative mortality (>108 viral genome copies/mg of spleen 7-14 days after viral infection), the recipient rockfish did not die, even when the viral genome copies in the spleen were >105 copies/mg. These results indicated asymptomatic infections. Notably, in a reverse-cohabitation challenge (artificially RSIV-infected rockfish as the viral donor and healthy rock bream as the recipient), RSIV horizontally infected from subclinical rockfish to rock bream (107 viral genome copies/mg of spleen 21 days after cohabitation) with 10-20% cumulative mortality. These results suggest that an asymptomatic, infected rockfish can naturally transmit the RSIV without being sacrificed.

Evaluation of a novel TaqMan probe-based real-time polymerase chain reaction (PCR) assay for detection and quantitation of red sea bream iridovirus

  • Kim, Guk Hyun;Kim, Min Jae;Choi, Hee Ju;Koo, Min Ji;Kim, Min Jeong;Min, Joon Gyu;Kim, Kwang Il
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.11
    • /
    • pp.351-359
    • /
    • 2021
  • The red sea bream iridovirus (RSIV) belonging to genus Megalocytivirus is responsible for red sea bream iridoviral disease (RSIVD) in marine and freshwater fishes. Although several diagnostic assays for RSIV have been developed, diagnostic sensitivity (DSe) and specificity (DSp) of real-time polymerase chain reaction (PCR) assays are not yet evaluated. In this study, we developed a TaqMan probe-based real-time PCR method and evaluated its DSe and DSp. To detect RSIV, the probe and primers were designed based on consensus sequences of the major capsid protein (MCP) genes from megalocytiviruses including RSIV, infectious spleen and kidney necrosis virus (ISKNV), and turbot reddish body iridovirus (TRBIV). The probe and primers were shown to be specific for RSIV, ISKNV, and TRBIV-types megalocytiviruses. A 95% limit of detection (LOD95%) was determined to be 5.3 viral genome copies/µL of plasmid DNA containing the MCP gene from RSIV. The DSe and DSp of the developed real-time PCR assay for field samples (n = 112) were compared with those of conventional PCR assays and found to be 100% and 95.2%, respectively. The quantitative results for SYBR Green and TaqMan probe-based real-time PCR were not significantly different. The TaqMan probe-based real-time PCR assay for RSIV may be used as an appropriate diagnostic tool for qualitative and quantitative analysis.

Molecular Characterization of Iridovirus in Cultured Turbot, Scophthazmus maximus (양식산 Tubot, Scophthalmus maximus 감염원으로 확인된 Iridovirus의 분자생물학적 연구)

  • 김기홍;김위식;김춘섭;김영진;키타무라신이치;정성주;정태성;오명주
    • Journal of Aquaculture
    • /
    • v.17 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • The high mortality of cultured turbot, Scophthalmus maximus was occurred from Gochang in June, 2003. Infect fish with iridovirus showed a lower feed intake and lethargic. These fish exhibited pale body color, extended abdominal and exophthalmus. Histopathological studies showed basophilic enlarged cells from kidney, spleen, gill, heart, muscle, stomach, intestine, liver and pancreas of these fish. In PCR amplification with red sea bream iridovirus (RSIV) specific primer set of a DNA fragment of 286 bp was obtained from infect turbot with the virus. The strain showed the high homologies with RSIV, LBIV (largemouth bass iridovirus), GSIV (giant seaperch iridovirus) and SBIV (sea bass iridovirus).