• Title/Summary/Keyword: ROS2

Search Result 2,020, Processing Time 0.026 seconds

Antioxidant Effect of Edaravone on the Development of Preimplantation Porcine Embryos against Hydrogen Peroxide-Induced Oxidative Stress

  • Do, Geon-Yeop;Kim, Jin-Woo;Chae, Sung-Kyu;Ahn, Jae-Hyun;Park, Hyo-Jin;Park, Jae-Young;Yang, Seul-Gi;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.30 no.4
    • /
    • pp.289-298
    • /
    • 2015
  • Edaravone (Eda) is a potent scavenger of inhibiting free radicals including hydroxyl radicals ($H_2O_2$). Reactive oxygen species (ROS) such as $H_2O_2$ can alter most kinds of cellular molecules such as lipids, proteins and nucleic acids, cellular apoptosis. In addition, oxidative stress from over-production of ROS is involved in the defective embryo development of porcine. Previous study reported that Eda has protective effects against oxidative stress-like cellular damage. However, the effect of Eda on the preimplantation porcine embryos development under oxidative stress is unclear. Therefore, in this study, the effects of Eda on blastocyst development, expression levels of ROS, and apoptotic index were first investigated in preimplantation porcine embryos. After in vitro fertilization, porcine embryos were cultured for 6 days in PZM medium with Eda ($10{\mu}M$), $H_2O_2$ ($200{\mu}M$), and Eda+$H_2O_2$ treated group, respectively. Rate of blastocyst development was significantly increased (P<0.05) in the Eda treated group compared with only $H_2O_2$ treated group. And, we measured intracellular levels of ROS by DCF-DA staining methods and investigated numbers of apoptotic nuclei by TUNEL assay analysis is in porcine blastocyst, respectively. Both intracellular ROS levels and the numbers of apoptotic nucleic were significantly decreased (P<0.05) in porcine blastocysts cultured with Eda ($10{\mu}M$). More over, the total cell number of blastocysts were significantly increased (P<0.05) in the Eda-treated group compared with untreated group and the only $H_2O_2$ treated group. Based on the results, Eda was related to regulate as antioxidant-like function according to the reducing ROS levels during preimplantation periods. Also, Eda is beneficial for developmental competence and preimplantation quality of porcine embryos. Therefore, we concluded that Eda has protective effect to ROS derived apoptotic stress in preimplantation porcine embryos.

Hypoxia Induces Paclitaxel-Resistance through ROS Production

  • Oh, Jin-Mi;Ryu, Yun-Kyoung;Lim, Jong-Seok;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.18 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • Oxygen supply into inside solid tumor is often diminished, which is called hypoxia. Many gene transcriptions were activated by hypoxia-inducible factor (HIF)-$1{\alpha}$. Here, we investigated the effect of hypoxia on paclitaxel-resistance induction in HeLa cervical tumor cells. When HeLa cells were incubated under hypoxia condition, HIF-$1{\alpha}$ level was increased. In contrast, paclitaxel-mediated tumor cell death was reduced by the incubation under hypoxia condition. Paclitaxel-mediated tumor cell death was also inhibited by treatment with DMOG, chemical HIF-$1{\alpha}$ stabilizer, in a dose-dependent manner. A significant increase in intracellular ROS level was detected by the incubation under hypoxia condition. A basal level of cell density was increased in response to 10 nM $H_2O_2$. HIF-$1{\alpha}$ level was increased by treatment with various concentration of $H_2O_2$. The increased level of HIF-$1{\alpha}$ by hypoxia was reduced by the treatment with N-acetylcysteine (NAC), a well-known ROS scavenger. Paclitaxel-mediated tumor cell death was increased by treatment with NAC. Taken together, these findings demonstrate that hypoxia could play a role in paclitaxel-resistance induction through ROS-mediated HIF-$1{\alpha}$ stabilization. These results suggest that hypoxia-induced ROS could, in part, control tumor cell death through an increase in HIF-$1{\alpha}$ level.

The Effect of Toll-like Receptor 2 Activation on the Non-opsonic Phagocytosis of Oral Bacteria and Concomitant Production of Reactive Oxygen Species by Human Neutrophils

  • Kim, Kap Youl;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • Chronic/cyclic neutropenia, leukocyte adhesion deficiency syndrome, Papillon-$Lef{\grave{e}}vre$ syndrome, and $Ch{\grave{e}}diak$-Higashi syndrome are associated with severe periodontitis, suggesting the importance of neutrophils in the maintenance of periodontal health. Various Toll-like receptor (TLR) ligands are known to stimulate neutrophil function, including FcR-mediated phagocytosis. In the present study, the effect of TLR2 activation on the non-opsonic phagocytosis of oral bacteria and concomitant production of reactive oxygen species (ROS) by human neutrophils was evaluated. Neutrophils isolated from peripheral blood were incubated with Streptococcus sanguinis or Porphyromonas gingivalis in the presence of various concentrations of $Pam_3CSK_4$, a synthetic TLR2 ligand, and analyzed for phagocytosis and ROS production by flow cytometry and chemiluminescence, respectively. $Pam_3CSK_4$ significantly increased the phagocytosis of both bacterial species in a dose-dependent manner. However, the enhancing effect was greater for S. sanguinis than for P. gingivalis. $Pam_3CSK_4$ alone induced ROS production in neutrophils and also increased concomitant ROS production induced by bacteria. Interestingly, incubation with P. gingivalis and $Pam_3CSK_4$ decreased the amounts of ROS, as compared to $Pam_3CSK_4$ alone, indicating the possibility that P. gingivalis survives within neutrophils. However, neutrophils efficiently killed phagocytosed bacteria of both species despite the absence of $Pam_3CSK_4$. Although P. gingivalis is poorly phagocytosed even by the TLR2-activated neutrophils, TLR2 activation of neutrophils may help to reduce the colonization of P. gingivalis by efficiently eliminating S. sanguinis, an early colonizer, in subgingival biofilm.

MITOCHONDRIAL DNA DELETION AND IMPAIRMENT OF MITOCHONDRIAL BIOGENESIS ARE MEDIATED BY REACTIVE OXYGEN SPECIES IN IONIZING RADIATION-INDUCED PREMATURE SENESCENCE

  • Eom, Hyeon-Soo;Jung, U-Hee;Jo, Sung-Kee;Kim, Young-Sang
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.119-126
    • /
    • 2011
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and $H_2O_2$-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and $H_2O_2$-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-${\beta}$-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

[Ca2+]-dependent Generation of Intracellular Reactive Oxygen Species Mediates Maitotoxin-induced Cellular Responses in Human Umbilical Vein Endothelial Cells

  • Yi, Sun-Ju;Kim, Kyung Hwan;Choi, Hyun Jung;Yoo, Je Ok;Jung, Hyo-Il;Han, Jeong-A;Kim, Young-Myeong;Suh, In Bum;Ha, Kwon-Soo
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2006
  • Maitotoxin (MTX) is known as one of the most potent marine toxins involved in Ciguatera poisoning, but intracellular signaling pathways caused by MTX was not fully understood. Thus, we have investigated whether intracellular reactive oxygen species (ROS) are involved in MTX-induced cellular responses in human umbilical vein endothelial cells. MTX induced a dose-dependent increase of intracellular [$Ca^{2+}$]. MTX stimulated the production of intracellular ROS in a dose- and time-dependent manner, which was suppressed by BAPTA-AM, an intracellular $Ca^{2+}$ chelator. Ionomycin also elevated the ROS production in a dose-dependent manner. MTX elevated transamidation activity in a time-dependent manner and the activation was largely inhibited by transfection of tissue transglutaminase siRNA. The activation of tissue transglutaminase and ERK1/2 by MTX was suppressed by BAPTA-AM or ROS scavengers. In addition, MTX-induced cell death was significantly delayed by BAPTA-AM or a ROS scavenger. These results suggest that [$Ca^{2+}$]-dependent generation of intracellular ROS, at least in part, play an important role in MTX-stimulated cellular responses, such as activation of tTGase, ERK phosphorylation, and induction of cell death, in human umbilical vein endothelial cells.

Neuroprotective Effects of Pinelliae Rhizoma Water-Extract by Suppression of Reactive Oxygen Species and Mitochondrial Membrane Potential Loss in a Hypoxic Model of Cultured Rat Cortical Cells. (배양대뇌신경세포 저산소증모델에서 유해산소생성억제 및 사립체막전위 소실방지에 의한 반하(半夏)의 신경세포사 억제 효능)

  • Kwon, Gun-Rok;Moon, Il-Soo;Lee, Won-Chul
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.598-606
    • /
    • 2009
  • Oxidative stress by free radicals is a major cause of neuronal cell death. Excitotoxicity in hypoxia/ischemia causes an increase in reactive oxygen species (ROS) and a loss of mitochondrial membrane potential (MMP), resulting in dysfunction of the mitochondria and cell death. Pinelliae Rhizoma (PR) is a traditional medicine for incipient stroke. We investigated the effects of PR Water-Extract on the modulation of ROS and MMP in a hypoxic model using cultured rat cortical cells. PR Water-Extract was added to the culture medium at various concentrations (0.25${\sim}$5, 5.0 ${\mu}g/ml$) on day in vitro 12(DIV12), given a hypoxic shock (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 hr), and cell viability was assessed on DIV15 by Lactate Dehydrogenase Assay (LDH assays). PR Water-Extract showed a statistically significant effect on neuroprotection (10${\sim}$15% increase in viability; p<0.01) at 1.0 and 2.5 ${\mu}g/ml$ in normoxia and hypoxia. Measurement of ROS production by $H_2DCF-DA$ stainings showed that PR Water-Extract efficiently reduced the number and intensity of ROS-producing neurons, especially at 1 hr post shock and DIV15. When MMP was measured by JC-1 stainings, PR Water-Extract efficiently maintained high-energy charged mitochondria. These results indicate that PR Water-Extract protects neurons in hypoxia by preventing ROS production and preserving the cellular energy level.

Effects of Streptozotocin, Bisphenol A and Diethylstilbestrol on Production of Reactive Oxygen Species and Lipid Peroxidation in the Boar Sperm

  • Lee, A-Sung;Lee, Sang-Hee;Lee, Seunghyung;Yang, Boo-Keun
    • Biomedical Science Letters
    • /
    • v.23 no.2
    • /
    • pp.128-132
    • /
    • 2017
  • Streptozotocin (STZ), bisphenol A (BPA), and diethylstilbestrol (DES) are known as endocrine disruptors, occurs oxidative stress in animal cells. Generally, oxidative stress induces reactive oxygen species (ROS) and lipid peroxidation of sperm and lead to decreased viability and fertility in pigs. Therefore, we investigated the influence of STZ, BPA and DES on ROS production and lipid peroxidation on boar sperm. Collected sperm were incubated with semen extender containing $10{\mu}M\;STZ$, $10{\mu}M\;BPA$ and $20{\mu}M\;DES$ for 3, 6 and 9 hours. Intracellular ROS and lipid peroxidation of sperm were analyzed by 2', 7'-dichlorofluorescein diacetate and malondialdehyde methods. The results show that, intracellular ROS was not significantly different among the all treatments, but lipid peroxidation was significantly increased in STZ group at 3 hour after incubation with boar sperm (P<0.05). These results suggest that STZ stimulates lipid peroxidation more than ROS production and may exert a negative effect on sperm fertility.

Inhibitory Effects of Allium senescens L. Methanol Extracts on Reactive Oxygen Species Production and Lipid Accumulation during Differentiation in 3T3-L1 Cells (두메부추(Allium senescens L.) 메탄올 추출물의 지방세포 내 활성산소종 생성 및 지질축적 억제 효능)

  • Choi, Hye-Young;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.498-504
    • /
    • 2014
  • Allium senescens L. is perennial plant of the Liliaceae family that grows throughout Korea. In this study, we investigated the effect of Allium senescens L. methanol extracts on reactive oxygen species (ROS) production and lipid accumulation during adipogenesis. Our results indicated that 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of Allium senescens L. methanol extracts increased in a dose-dependent manner. Allium senescens L. methanol extracts suppressed ROS production and lipid accumulation during adipogenesis. In addition, Allium senescens L. methanol extracts inhibited the mRNA expression of the pro-oxidant enzyme, such as G6PDH and lead to a reduction in the mRNA levels of the transcription factors, such as sterol regulatory element binding proteins 1c, peroxisome proliferator-activated receptor ${\gamma}$, and CCAAT/enhancer-binding proteins ${\alpha}$. These results indicate that Allium senescens L. methanol extracts inhibit adipogenesis by modulating ROS production associated with ROS-regulating genes and directly down-regulating adipogenic transcription factors.

The Role of ROS-NF-κB Signaling Pathway in Enhancement of Inflammatory Response by Particulate Matter 2.5 in Lipopolysaccharide-stimulated RAW 264.7 Macrophages (RAW 264.7 대식세포에서 지질 다당류에 의한 미세먼지(PM2.5) 유발 염증 반응 증진에 미치는 ROS-NF-κB 신호 전달 경로의 역할)

  • Kwon, Da Hye;Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Nam, Soo-Wan;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1110-1119
    • /
    • 2021
  • The purpose of this study was to investigate whether the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages could be promoted by particulate matter 2.5 (PM2.5) stimulation. To this end, the levels of inflammatory parameters, reactive oxygen species (ROS) and inflammation-regulating genes were investigated in RAW 264.7 cells treated with PM2.5 in the presence or absence of LPS. Our results showed that the production levels of pro-inflammatory mediators (nitric oxide and prostaglandin E2) and cytokines (interleukin-6 and -1β) were significantly increased by PM2.5 stimulation in LPS-treated RAW 264.7 cells, which was correlated with increased expression genes involved in their production. In addition, when LPS-treated RAW 264.7 cells were exposed to PM2.5, nuclear factor-kappaB (NF-κB) expression was further increased in the nucleus, and the expression of inhibitor of NF-κB as well as NF-κB in the cytoplasm was decreased. These results suggest that the co-treatment of PM2.5 and LPS further increases the activation of the NF-κB signaling pathway compared to each treatment alone, thereby contributing to the promotion of transcriptional activity of inflammatory genes. Furthermore, although the generation of ROS was greatly increased by PM2.5 in LPS-treated RAW 264.7 cells, the NF-κB inhibitor did not reduce the generation of ROS. In addition, when the generation of ROS was artificially suppressed, the production of inflammatory mediators and the activation of NF-κB were both abolished. Therefore, our results suggest that the increase in the NF-κB-mediated inflammatory response induced by PM2.5 in LPS-treated RAW 264.7 macrophages was a ROS generation-dependent phenomenon.

Processings and Quality Characteristics of the Oyster Sauce from IQF Oyster Crassostrea gigas (개체동결 굴(Crassostrea gigas)을 이용한 굴소스의 제조 및 품질특성)

  • Hwang, Young-Suk;Kim, Sang-Hyun;Kim, Byeong-Gyun;Kim, Seon-Geun;Cho, Jun-Hyun;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.833-838
    • /
    • 2015
  • To develop a value-added product from individually quick-frozen oyster Crassostrea gigas extract (IQFOE), we prepared two types of oyster sauce (OS): bottled OS (BOS) and retort pouched OS (ROS). We investigated processing conditions, quality metrics and flavor compounds in each type of sauce. We found that the most appropriate base formular for both BOS and ROS consisted of 40.0% IQFOE (Brix $30^{\circ}$), 15.0% sugar, 6.0% salt, 4.0% monosodium glutamate, 4.0% soy sauce, 3.5% starch, 3.0% yeast extract, 3.5% wheat flour and 21.0% water. The crude protein, salinity and amino-nitrogen contents of the BOS and ROS were 8.2 and 8.3%, 9.3 and 9.2%, and 539.2 and 535.2 mg/100 g, respectively. In commercial oyster sauces (COS), these values were 4.7-6.5%, 9.7-12.0%, and 244.7-504.2 mg/100 g, respectively. The total free amino acids content of ROS was 7,346.9 mg/100 g, and the main free amino acids were glutamic acid, taurine, proline, glycine and alanine. The inosinic monophosphate (IMP) content of the ROS was 131.6 mg/100 g, and the primary inorganic ions were Na, K, S and P. The present BOS and ROS have favorable organoleptic qualities and storage stability compared with COS, and are suitable for commercialization as high-flavor seasoning sauces.