• 제목/요약/키워드: ROS

검색결과 2,722건 처리시간 0.033초

MS-5, a Naphthalene Derivative, Induces the Apoptosis of an Ovarian Cancer Cell CAOV-3 by Interfering with the Reactive Oxygen Species Generation

  • Ma, Eunsook;Jeong, Seon-Ju;Choi, Joon-Seok;Nguyen, Thi Ha;Jeong, Chul-Ho;Joo, Sang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.48-53
    • /
    • 2019
  • Reactive oxygen species (ROS) are widely generated in biological processes such as normal metabolism and response to xenobiotic exposure. While ROS can be beneficial or harmful to cells and tissues, generation of ROS by diverse anti-cancer drugs or phytochemicals plays an important role in the induction of apoptosis. We recently identified a derivative of naphthalene, MS-5, that induces apoptosis of an ovarian cell, CAOV-3. Interestingly, MS-5 induced apoptosis by down-regulating the ROS. Cell viability was evaluated by water-soluble tetrazolium salt (WST-1) assay. Apoptosis was evaluated by flow cytometry analysis. Intracellular ROS ($H_2O_2$), mitochondrial superoxide, mitochondrial membrane potential (MMP) and effect on cycle were determined by flow cytometry. Protein expression was assessed by western blotting. The level of ATP was measured using ATP Colorimetric/Fluorometric Assay kit. MS-5 inhibited growth of ovarian cancer cell lines, CAOV-3, in a concentration- and time-dependent manner. MS-5 also induced G1 cell cycle arrest in CAOV-3 cells, while MS-5 decreased intracellular ROS generation. In addition, cells treated with MS-5 showed the decrease in MMP and ATP production. In this study, we found that treatment with MS-5 in CAOV-3 cells induced apoptosis but decreased ROS level. We suspect that MS-5 might interfere with the minimum requirements of ROS for survival. These perturbations appear to be concentration-dependent, suggesting that MS-5 may induce apoptosis by interfering with ROS generation. We propose that MS-5 may be a potent therapeutic agent for inducing apoptosis in ovarian cancer cell through regulation of ROS.

Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages

  • Kim, Ga-Young;Jeong, Hana;Yoon, Hye-Young;Yoo, Hye-Min;Lee, Jae Young;Park, Seok Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.640-645
    • /
    • 2020
  • Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS signal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.

Rosuvastatin이 유도하는 ROS가 전립선암 PC-3 세포주의 세포사멸 유도에 미치는 영향 (Rosuvastatin Induces ROS-mediated Apoptosis in Human Prostate Cancer PC-3 Cells)

  • 최현덕;백종진;김상헌;유선녕;천성학;김영욱;남효원;김광연;안순철
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.398-405
    • /
    • 2016
  • 3-Hydroxy-3-methylglutaryl coenzyme A 환원효소의 억제제로 알려진 statin은 고지혈증 치료제로 널리 사용되고 있고, 또한 다양한 암에서 항암효과를 나타낸다고 알려져 있다. 최근 연구에서는 reactive oxygen species (ROS)가 세포사멸 신호에 중요한 역할을 한다고 보고하였지만, rosuvastatin에 의한 ROS 생성의 정확한 기전은 아직 밝혀지지 않았다. 인간 전립선암 세포주인 PC-3 세포를 이용하여 rosuvastatin에 의한 세포사멸 경로를 확인하였다. 세포독성, 세포사멸과 ROS의 생성을 측정하기 위해서 MTT assay, annexin V/PI 염색과 DCFH-DA염색을 통해 flow cytometry에 의해 측정하였다. 본 연구의 결과에서, rosuvastatin은 농도와 시간 의존적으로 세포 생존율 감소와 세포형태변화를 확인할 수 있었다. Flow cytometry 분석을 통해 세포주기와 apoptosis를 확인하였고 Western blotting assay를 통하여 PARP와 procaspase-3가 감소되는 것을 통해 apoptosis를 재확인 할 수 있었다. 또한 rosuvastatin은 농도 의존적으로 ROS 생산을 증가하였고, ROS 생성 저해제인 N-acetylcysteine (NAC) 처리를 통해 ROS와 apoptosis가 회복되었다. 따라서 rosuvastatin이 ROS 생성을 통해 apoptosis를 유도한다는 것을 알 수 있었고, 이는 인간 전립선 암세포에 대한 항암치료제로서의 가능성을 제시한다.

The role of peroxidases in the pathogenesis of atherosclerosis

  • Park, Jong-Gil;Oh, Goo-Taeg
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.497-505
    • /
    • 2011
  • Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.

Propolis Inhibits UVA-Induced Apoptosis of Human Keratinocyte HaCaT Cells by Scavenging ROS

  • Kim, Han Bit;Yoo, Byung Sun
    • Toxicological Research
    • /
    • 제32권4호
    • /
    • pp.345-351
    • /
    • 2016
  • Propolis is a resinous material collected by honeybees from several plant sources. This research aimed at showing its protective effect against UVA-induced apoptosis of human keratinocyte HaCaT cells. Using Hoechst staining, it was demonstrated that propolis (5 and $10{\mu}g/mL$) significantly inhibited the apoptosis of HaCaT cells induced by UVA-irradiation. Propolis also showed the protective effect against loss of mitochondrial membrane potential induced by UVA-irradiaiton in HaCaT cells. Propolis also inhibited the expression of activated caspase-3 induced by UVA-irradiation. To investigate the role of ROS in UVA-induced apoptosis and protection by propolis, the generation of ROS was determined in cells. The results showed that the generation of ROS was markedly reduced in cells pretreated with propolis. Consequently, propolis protected human keratinocyte HaCaT cells against UVA-induced apoptosis, which might be related to the reduction of ROS generation by UVA-irradiation.

ROS2 공격 기술 동향 분석

  • 허재웅;이예지;조효진
    • 정보보호학회지
    • /
    • 제33권4호
    • /
    • pp.57-63
    • /
    • 2023
  • Industry 4.0의 진행으로 이기종의 IoT 장비들 간의 통신을 위해 다양한 산업용 통신 미들웨어들이 등장했다. 그 중 Robotics 분야에서 활발히 사용되는 Robot Operating System (ROS)는 개발자 커뮤니티와 로봇 개발 도구들을 기반으로 지속적인 시장 점유율 증가세를 보이고 있다. 초기 발표된 ROS1의 경우 보안이 전혀 고려되지 않은 설계로 Packet Injection 공격등의 사이버 보안 위협에 취약했지만, ROS2의 경우 통신 미들웨어인 Data Distribution Service (DDS) 통신규격을 전송 계층에 적용하여 메시지 전송에 대한 보안 기능을 제공하고 있다. 그러나 최근 연구에서는 DDS와 관련된 ROS2 취약점이 발표되고 있다. 따라서 본 논문에서는 DDS와 관련된 ROS2의 공격 기술 동향을 소개한다.

시토신 탈메틸화 관련 NtROS2a 유전자 도입 형질전환벼의 건조스트레스 내성 증진 (Overexpression of NtROS2a gene encoding cytosine DNA demethylation enhances drought tolerance in transgenic rice)

  • 최장선;이인혜;조용구;정유진;강권규
    • Journal of Plant Biotechnology
    • /
    • 제43권3호
    • /
    • pp.376-382
    • /
    • 2016
  • DNA methylation은 무수히 많이 발생하는 생리적 및 병리적 측면의 과정에서 관련 유전자의 발현을 조절함으로써 중추적인 역할을 가지고 있다. 본 연구에서는 NtROS2a가 과발현된 형질전환 벼를 육성하고, 그들의 형태적 측면을 관찰하고 스트레스 내성을 검토하였다. 형질전환 식물체는 WT에 비하여 신초의 신장이 작게 나타났다. 저온 스트레스 처리 하에서 NtROS2a 형질전환 벼는 스트레스로 인한 생육 불량을 보였으나 건조 스트레스 처리 하에서는 WT보다는 높은 비율로 회복하여 생존하는 것을 확인할 수 있었다. 이러한 결과는 NtROS2a 유전자의 과발현으로 인해 벼가 건조 스트레스에 노출되면 내성을 증진시킨 것으로 생각된다.

Histamine Release by Hydrochloric Acid is Mediated via Reactive Oxygen Species Generation and Phospholipase D in RBL-2H3 Mast Cells

  • Kim, Chang-Jong;Lee, Seung-Jun;Seo, Moo-Hyun;Cho, Nam-Young;Sohn, Uy-Dong;Lee, Moo-Yeol;Shin, Yong-Kyoo;Sim, Sang-Soo
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.675-680
    • /
    • 2002
  • In order to investigate the underlying mechanism of HCI in oesophagitis, the inflammatory response to HCI was observed in RBL-2H3 mast cells. Rat basophilic leukemia (RBL-2H3) cells were used to measure histamine release, arachidonic acid (AA) release, reactive oxygen species (ROS) and peroxynitrite generation induced by HCI. Exogenous HCl increased the level of histamine release and ROS generation in a dose dependent manner, whereas it decreased the spontaneous release of [$^3$H] M and the spontaneous production of peroxynitrite. Mepacrine (10 $\mu$M), oleyloxyethyl phosphorylcholine (10 $\mu$M) and bromoenol lactone (10 $\mu$M) did not affect both the level of histamine release and ROS generation induced by HCI. U73122 (1 $\mu$M), a specific phospholipase C (PLC) inhibitor did not have any influence on level of histamine release and ROS generation. Propranolol (200 $\mu$M), a phospholipase D (PLD) inhibitor, and neomycin (1 mM), a nonspecific PLC and PLD inhibitor, significantly inhibited both histamine release and ROS generation. Diphenyleneiodonium (10 $\mu$M), a NADPH oxidase inhibitor, and tiron (5 mM), an intracellular ROS scavenger significantly inhibited the HCI-induced histamine release and ROS generation. These findings suggest that the inflammatory responses to HCI is related to histamine release and ROS generation, and that the ROS generation by HCI may be involved in histamine release via the PLD pathway in RBL-2H3 cells.

Effects of Sunghyangchungisan(SHCS) on Oxidant-induced Cell Death in Human Neuroglioma Cells

  • Kim Na-Ri;Kwon Jung-Nam;Kim Young-Kyun
    • 대한한의학회지
    • /
    • 제26권2호
    • /
    • pp.63-76
    • /
    • 2005
  • Objectives: Reactive oxygen species (ROS) have been implicated in the pathogenesis of a wide range of acute and longterm neurodegenerative diseases. This study was undertaken to examine whether Sunghyangchungisan(SHCS), a well-known prescription in Korean traditional medicine, might have beneficial effects on ROS-induced brain cell injury. Methods: Human neuroglioma cell line A172 and H2O2 were employed as an experimental model cell and oxidant. Results: SHCS effectively protected the cells against both the necrotic and apoptotic cell death induced by H2O2. The effect of SHCS was dose-dependent at concentrations ranging from 0.2 to 5mg/ml. SHCS significantly prevented depletion of cellular ATP and activation of poly (ADP-ribose) polymerase induced by H2O2. It also helped mitochondria to preserve its functional integrity estimated by MTT reduction ability. Furthermore, SHCS significantly prevented H202-induced release of cytochrome c into cytosol. Determination of intracellular ROS showed that SHCS might exert its role as a powerful scavenger of intracellular ROS. Conclusions: The present study provides clear evidence for the beneficial effect of SHCS on ROS-induced neuroglial cell injury. The action of SHCS as an ROS-scavenger might underlie the mechanism.

  • PDF

이종의 제어 플랫폼들로 구성된 로봇 시스템을 ROS 기반의 시스템으로 손쉽게 통합하기 위한 소프트웨어의 개발 (SW Development for Easy Integration of Robot System Composed of Heterogeneous Control Platforms into ROS-based System)

  • 강형석;이동원;신동헌
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.375-384
    • /
    • 2020
  • Today's robots consist of many hardware and software subsystems, depending on the functions needed for specific tasks. Integration of subsystems can require a great deal of effort, as both the communication method and protocol of the subsystem can vary. This paper proposes an expandable robotic system in which all subsystems are integrated under Robot Operation System (ROS) framework. To achieve this, the paper presents a software library, ROS_M, developed to implement the TCP/IP-based ROS communication protocol in different control environments such as MCU and RT kernel based embedded system. Then, all the subsystem including hardware can use ROS protocol consistently for communication, which makes adding new software or hardware subsystems to the robotic system easier. A latency measurement experiment reveals that the system built for loop control can be used in a soft real-time environment. Finally, an expandable mobile manipulator robot is introduced as an application of the proposed system. This robot consists of four subsystems that operate in different control environments.