
1. Introduction

Robots that offer high levels of service are composed of various

subsystems such as software modules, sensors and actuators.

However, integrating subsystems is not easy because their com-

munication methods and protocols tend to differ from each other.

In addition, the circumstances and tasks of robots vary so considerably

that the ability to add and remove subsystems to cope with these

changes is required.

In this paper, we propose an expandable robotic system to

address this laborious integration problem. The proposed system

is based on the communication method of ROS[1], which is a de

facto standard robotic software framework[2-6]. The ROS protocol

is a TCP/IP-based communication that informs the IP address

and the provided functions between nodes, which means the

primitive unit of the ROS framework. However, ROS protocol is

basically only available among ROS nodes which operate in

ROS framework. So, there should be another method if ROS

system needs to communicate with non-ROS system outside.

There had been previous researches in order to interconnect ROS

and non-ROS systems. Rosbridge is one of the official packages

in ROS framework, which is the first solution developed to solve

this interconnection problem[7]. Rosbridge is a special node

operating in ROS framework which receives and sends JSON

based ROS functionality messages through web socket server. It

receives JSON message from non-ROS system which contains

이종의 제어 플랫폼들로 구성된 로봇 시스템을 ROS 기반의

시스템으로 손쉽게 통합하기 위한 소프트웨어의 개발

SW Development for Easy Integration of Robot System

Composed of Heterogeneous Control Platforms into

ROS-based System

강 형 석1
․이 동 원2

․신 동 헌†

Hyeong Seok Kang1, Dong Won Lee2, Dong Hun Shin†

Abstract: Today’s robots consist of many hardware and software subsystems, depending on the

functions needed for specific tasks. Integration of subsystems can require a great deal of effort, as both

the communication method and protocol of the subsystem can vary. This paper proposes an expandable

robotic system in which all subsystems are integrated under Robot Operation System (ROS) framework.

To achieve this, the paper presents a software library, ROS_M, developed to implement the TCP/IP-

based ROS communication protocol in different control environments such as MCU and RT kernel

based embedded system. Then, all the subsystem including hardware can use ROS protocol consistently

for communication, which makes adding new software or hardware subsystems to the robotic system

easier. A latency measurement experiment reveals that the system built for loop control can be used in

a soft real-time environment. Finally, an expandable mobile manipulator robot is introduced as an

application of the proposed system. This robot consists of four subsystems that operate in different

control environments.

Keywords: ROS, Node, Framework, Protocol, TCP/IP

Received : Jun. 12. 2020; Revised : Aug. 7. 2020; Accepted : Sep. 16. 2020

※ This paper was supported by the research grant of University of Seoul

1. Principle Researcher, MINTROBOT Co., Ltd., Seoul, Korea

(justinhskang@gmail.com)

2. Researcher, MINTROBOT Co., Ltd., Seoul, Korea (dongwon0409

@naver.com)

† Professor, Corresponding author: Mechanical and Information

Engineering, University of Seoul, Seoul, Korea (shin@uos.ac.kr)

CopyrightⓒKROS

Journal of Korea Robotics Society (2020) 15(4):375-384
https://doi.org/10.7746/jkros.2020.15.4.375 ISSN: 1975-6291 / eISSN: 2287-3961 375

376 로봇학회 논문지 제15권 제4호 (2020. 12)

functional information of ROS framework. Then it translates the

received message into ROS protocol and sends it to ROS nodes.

Thus, it operates as a bridge to interconnect ROS system and

non-ROS system. The system that communicates with Rosbridge

naturally needs to prepare a JSON parser and websocket protocol

which are overheads. And because of these shortcomings, the use

of Rosbridge is very limited. The most generally use cases of

Rosbridge are a communication bridge between ROS system and

web browsers which can visualize the specific information in the

ROS system or interface the intension of users to ROS system[8-10].

It can hardly be used for control purpose which must reduce

overheads as much as possible for its fast response.

The system that controls actuators and sensors normally

operate under MCU like firmware environment. In the past,

implementing TCP/IP communication in a restricted environment

such as an MCU platform was not easy with respect to technology

and cost because an MCU was insufficient for processing transmitted

data packets concurrently at high frequencies. Thus, Simpler

communication methods such as RS232/485 then became widely

used to link a top-level control system and subsystems[11-13].

However, since the technological advances have led many available

solutions, TCP/IP communication can now be easily implemented

even in an MCU platform. Thus, communicating with an ROS

framework by using an ROS communication method even in an

MCU environment is possible. [Fig. 1] shows the difference between

the integration method of subsystems that use the conventional

serial communication protocol and the system integration method

using the TCP/IP-based ROS protocol proposed in this paper.

Since the original ROS framework is installed only on Linux-based

systems, the structure of the system shown in [Fig. 1(b)] requires

the ROS protocol stack that is available on MCU platforms, and

several studies have been conducted to address this issue. Migliavacca

developed μROSNode, a software library that provides the core

functions of the communication mechanism of ROS and enables

hardware to communicate with the node in the ROS system

without having to install an ROS framework[14]. Also, there exists

several implementation studies by using developed μROSNode[15-17].

However, because only one hardware node of the Cortex-M4

MCU/DSP-based platform was implemented in the aforementioned

study, additional effort is required to apply this library to other

platforms. Above all, even though the specific use cases of μ

ROSNode were controllers, the previous researches didn’t show

the feasibilities in order to use the developed method for a

control system, such as latency performance to determine control

loop period. Recently, Quigley introduced a small embedded

system for ROS2, which has since been developed as a next

generation of ROS[18]. His embedded system uses a UDP/RTPS-

based communication protocol suitable for the system architecture

of an ROS2. However, because the newly distributed architecture

of the ROS2 is quite different from the existing master/slave

architecture of the ROS, the robot systems based on ROS could

have difficulty migrating to this new ROS2 environment.

This study introduces ROS_M library that we developed to

realize the system structure shown in [Fig. 1(b)]. ROS_M is a

software library toolkit that helps implement computer program

that behaves like a ROS node without the installation of the

original ROS framework. It can communicate with other ROS

nodes in the system by providing functions to construct topic and

service transmission mechanisms for the ROS framework within

very fast response enough to construct closed control loop.

Furthermore, ROS_M has improved in terms of portability as

compared to previous studies. Because ROS_M is designed by

considering porting to a wider variety of environments, it can be

easily ported to an RT-kernel-based embedded system or even a

Windows-based general system. Therefore, not only MCU-like

platforms, motion controllers that require real-time capabilities

or tablet PCs used for playback of content can be recognized as

ROS nodes and integrated into an ROS framework. We first

present the structure of our ROS_M library and implementation

details related to the manner in which the ROS_M library

communicates with other ROS nodes. We then show the results

[Fig. 1] Difference between two robotic system structures in the

ROS framework (left: Integrated system with serial protocols;

right: Integrated system with TCP/IP based ROS protocol)

이종의 제어 플랫폼들로 구성된 로봇 시스템을 ROS 기반의 시스템으로 손쉽게 통합하기 위한 소프트웨어의 개발 377

of a latency measurement experiment to prove that how much

feasible the developed ROS_M library is for control system, in

which we also considered the effect on using ethernet switches

required to expand the subsystem, a topic that has not been

reviewed in previous studies. Finally, an expandable mobile

manipulator robot which has several subsystems operating under

different platform respectively is introduced as an implementation.

The experimental robot was composed of four subsystems, namely,

those for the head, arm, body, and mobility, each with a different

control platform. Each subsystem communicates each other by

using only ROS protocol consistently and enough fast to make

closed control loop among subsystems in 1-kHz control period.

2. ROS_M

ROS_M1) is a software library that implements topic and

service communication mechanisms of ROS framework. Because

it is written in only ANSI C language without any support

utilities such as a XML parser or STL in C++, it is sufficiently

light to be ported in any platform. ROS_M enables implementing

a computer program that can operate like an ROS node, thus

allowing for communication with other ROS nodes over networks.

Therefore, the ROS_M library is extremely useful for developing

distributed subsystems in an ROS framework (including networks)

if the subsystems cannot install standard ROS packages due to

system limitations. [Fig. 2] presents the structure of our ROS_M

library. The ROS_M library consists of two layers: core and

portable. The core layer implements the communication mechanism

of the ROS framework. It implements the TCP/IP server capability,

which is required for communication with the ROS Master and

other ROS nodes in the network. In addition, the data structures

of the topic/service and their transmission mechanisms are

implemented. Users do not need to modify the core layer, even

1) The source codes of ROS_M library are available from https://github.

com/mintrobot/ROS_M.

though they must port the ROS_M library into other platforms.

This is because the core layer references only the functions in the

portable layer. The portable layer implements the system functions

such as threading to support the functions in the core layer. The

essential features of the ROS_M library are as follows.

2.1 Master and Slave APIs handling

The ROS Master of the ROS framework manages node

information such as the node name, provided topic and service,

IP address, port number, and others. It collects information about

nodes when the nodes are initialized. Then, it provides the proper

information to the other nodes by using the collected information.

The ROS framework uses XML/RCP packets for these com-

munication functions, which are known as ROS Master and Slave

APIs.

These functions are necessary to make a P2P connection

between nodes for the purpose of data transmission. The ROS

framework uses a binary packet for data transmission because it

is faster than the text-based XML/RCP packet. If a node receives

the proper information from the ROS Master for data trans-

mission, the socket connection between nodes is created and the

actual data transmission, such as a publish/subscribe topic or

request/response service, is started. To satisfy this mechanism,

ROS_M provides two servers: XML/RCP for the ROS Master

and Slave APIs, and TCPROS for creating a P2P connection

between nodes. [Fig. 3] shows the data transmission between the

ROS and ROS_M nodes, which is the computer program that

operates like an ROS node by the ROS_M library. The XML/RPC

server in the ROS_M node (A) sends and receives the XML/RPC

packets to and from the ROS Master in the ROS framework.

Then, the ROS node (B) receives the proper information from the

[Fig. 2] ROS_M Library structure

[Fig. 3] Example of data transmission between ROS_M and

ROS nodes

378 로봇학회 논문지 제15권 제4호 (2020. 12)

ROS Master to connect to the ROS_M node (A). It then connects

to the TCPROS server in the ROS_M node (A) to make the P2P

connection for data transmission.

2.2 Publish/Subscribe and Request/Response mechanism

Publish/subscribe topic and request/response service are the

main transmission mechanisms of the ROS framework. Publish/

subscribe topic mechanism is used for sharing specific variables

among nodes. The shared variable is called a topic. A node in the

ROS system can share the value of some variables owned itself

by sending the value to the other nodes who are interested in.

This is the publish topic mechanism. However, the node sends

the value of the variable only if when it has received the request

of sending from the other nodes. This is the subscribe topic

mechanism.

On the other hand, request/response service mechanism is

used for executing specific functions owned in other nodes. The

executed function is called a service. A node can execute some

function implemented in the other nodes by sending execution

request packet. This is the request service mechanism. Also, the

node can receive the result of the executed function by waiting

receive result packet. This is the response service mechanism.

Those mechanisms are also implemented in the ROS_M library,

applying the same principle as that of the ROS framework but

using a different approach for added portability. [Fig. 4] shows

how the ROS_M library handles topic transmission. First, the

message file structure, which describes the structural information

of the transmission data, must be instantiated. This information is

described in the *.msg file in the original ROS framework. Then,

it advertises the topics that it publishes to the ROS Master in the

other platform. Therefore, the ROS nodes in other platforms can

connect to the ROS_M node in order to subscribe the topic that

the ROS_M node publishes. Once the ROS node connects to the

ROS_M node, the thread for publishing the topic is generated

and the actual data transmission proceeds. In addition, the

ROS_M node can connect to the ROS node in order to subscribe

the topic that the ROS node publishes. In the same manner as

with the ROS node, the thread for subscribing a topic is

generated after the ROS_M nodes connect to the ROS node.

Then, the data transmission proceeds. The thread receives the

data from the ROS node and pushes the received data into the

data queue. Then, if the ROS_M node calls the spin function, that

function pulls the data from the data queue and executes the

callback function with the acquired data. [Fig. 5] represents the

detailed process of the topic transmission in the ROS_M library.

The implementation of a request/response service mechanism

is similar to a publish/subscribe topic mechanism. [Fig. 6] shows

how the ROS_M library handles a service transmission. First, the

ROS_M node instantiates the service file by using the structure

type, which is defined by using the *.srv file in the original ROS

framework. It advertises the generated service information to the

ROS Master in other platforms. The ROS nodes in other

platforms connect to the ROS_M node to request the service

advertised. Then, the service response thread is generated and

calls the actual service function using the received parameters

from the ROS node. Finally, the service response thread receives

[Fig. 4] Publish/Subscribe topics in the ROS_M library

[Fig. 5] Details of transmission (up: publish; down: subscribe)

[Fig. 6] Request/Response services in ROS_M library

이종의 제어 플랫폼들로 구성된 로봇 시스템을 ROS 기반의 시스템으로 손쉽게 통합하기 위한 소프트웨어의 개발 379

the result from the service function, then sends the result to the

ROS nodes. Meanwhile, ROS_M node generates the service

request thread when it needs to request the service from the ROS

node in other platforms. The service request thread connects to

the ROS node and sends the request message with parameters.

Finally, the service request thread receives the result of the

service from the ROS node and returns it to the control task. The

service request/response threads sustain the connection if the

persistence option is enabled. This option skips the handshake

process in order to prepare the actual transmission by sending

and receiving XML/RPC packets. [Fig. 7] illustrates the detailed

process of the service transmission in the ROS_M library.

3. Latency Measurement Experiment

3.1 Experimental System

Latency is a critical feature in the control system of a robot

that requires real-time capability and fast response. Because an

ROS framework uses TCP/IP communication for distributed

processing, an ethernet switch is required to connect subsystems

to the network. Therefore, the latency among the nodes including

the ethernet switches is crucial in constructing a trustable control

system. In this experiment, we generate results based on a

latency measurement test in a network environment that includes

ethernet switches and ROS_M nodes based on an MCU/DSP

platform, which is the most restrictive environment in which

ROS_M nodes can operate.

[Fig. 8] represents the ROS_M node implemented on an MCU/

DSP platform, which assumes a controller of a subsystem.

STM32F407 which has the Cortex-M4 core is used with a DP83848

ethernet PHY chip. Also, the FreeRTOS real-time kernel and the

lwIP TCP/IP stack are ported to support the portable layer. The

implemented ROS_M node connects to the ROS Master operating

on the other platform and can communicate with other ROS nodes

in the ROS framework. [Fig. 9] illustrates the two interfaced nodes

in the ROS framework. Node_A is the ROS_M node operated on

the MCU/DSP platform, and node_B is the ROS node operated

in the PC platform with the installed ROS framework. Two

nodes publish topic_A and topic_B, respectively. The node_A

subscribes to topic_B by receiving node_B's IP address and port

number from ROS Master running on the PC platform. Then, it

connects directly to the node_B by using the received IP address

and the port number, then starts receiving the topic. The process

whereby node_B subscribes topic_A from node_A works in the

same manner. However, the latency between nodes cannot be

measured by using topic packets because sending and receiving

of topic packets are processed by ROS Master which is the

top-level controller of ROS framework. Therefore, we cannot

know the exact moment at the node side when the topic packet

had been sent and had been received. So, we used service packets

instead in order to measure the latency between nodes because

we can control the exact motion of sending and receiving service

packets when we write application codes.

[Fig. 10] shows the captured signal from the node A and node

[Fig. 7] Details of service transmission (up: response; down:

request)

[Fig. 8] Implemented ROS_M node in an MCU-based platform

[Fig. 9] Cooperation of ROS and ROS_M nodes

380 로봇학회 논문지 제15권 제4호 (2020. 12)

B. The node_B triggers a signal just after sending the request

packet to the node_A. Then, the node_A triggers a signal just

after receiving the request packet from the node_B. The exact

moment of sending and receiving service packets is representable

by triggering the signals in the application codes. Also, the

triggered signals are captured by using an oscilloscope. The

distance between triggered signals is the exact latency of request

packet between nodes. The node_B triggers the signal again just

after sending the response packet as the result for the requested

service to the node_A. Then, the node_A triggers the signal just

after receiving the response packet from the node_B. This is the

exact latency of response from between nodes. Also, the sum of

two latencies will be the round-trip latency which should be

measured to determine the control loop period of the system. [Fig.

11] shows the experimental system for measuring communication

latency when considering ethernet switches using the ROS_M

node implemented in the MCU/DSP platform. The system has

four nodes that are operated in their respective platforms. Node 1

is the standard ROS node operated on the PC platform as a

software node, in which the ROS framework is installed. Nodes

2, 3, and 4 are the ROS_M nodes operated in the MCU/DSP

platform as hardware nodes. Three ethernet switches are used to

construct LAN. Nodes 1 and 2 are connected to switch 1, and

nodes 3 and 4 are connected to switches 2 and 3, respectively.

Every node in the system has a 10.0.0.x IP address. Each node

then sends the service request packet to other nodes, and the

nodes that received the service request packet send the response

packet back. The latency between nodes is measured as shown in

[Fig. 10]. The RS232/Tx pin of the PC and the GPIO pin of

STM32F4 are used to send the signals to the oscilloscope,

respectively. In our experiment, latency time was measured 10

times for each connection. In addition, only a four-byte payload

was used for both the request and response, as it has already been

proven that the size of the payload under MTU does not affect

the increase in latency[19]. Software features such as the service

persistence option and Nagle’s algorithm were considered for

increasing the transmission speed. [Table 1] lists the specifications

of our experiment.

3.2 Result

[Fig. 12] shows the results of our experiment. As can be clearly

seen, the latency increased with the number of switches that the

packets were required to pass through. The average increase in

[Fig. 10] Captured signals from node B and node A

[Fig. 11] Experimental system for latency measurement

[Table 1] Specifications of the experimental system

Feature Remarks

Num. of samples
10 samples for each connection by direction

(total 240 samples)

Ethernet switch netis ST3105S (10/100 Mbps)

Cable CAT.5e (length : 2m)

Payload 4 byte for the both request and response

Service persistence Enabled

Nagle’s algorithm Disabled [Fig. 12] Latency results of service request/response message

이종의 제어 플랫폼들로 구성된 로봇 시스템을 ROS 기반의 시스템으로 손쉽게 통합하기 위한 소프트웨어의 개발 381

latency with the number of switches was 36.3 μs. The minimum

and maximum latency of the round-trip was 372.9 and 587.2 μs,

respectively. Thus, the 1-ms (1-kHz) control period for a loop

control was available in soft real-time.

[Fig. 13] compares node 1/node 3 with node 2/node 3, which

had the same number of switches that the transmitted packet was

required to pass through. On average, the latency between the

ROS_M nodes (node 2/node 3) was 70.7 μs lower than that

between the ROS and ROS_M nodes (node 1/node 3). Therefore,

the both data communication between ROS and ROS_M nodes

and that between individual ROS_M nodes can be used for

feedback control within a 1-kHz control period.

4. Expandable Robotic System for a

Mobile Manipulator

4.1 Expandable Mobile Manipulator

A mobile manipulator is normally used to handle sophisticated

service tasks that require cooperation among several different

functions such as locomotion, manipulation, grasping, and computer

vision. These different functions normally operate in different

platforms optimized according to their characteristics. For example,

a vision recognition system requires very high computing power

and video acceleration capability. On the other hand, a motion

controller for a robotic arm requires real-time capable task

management in order to calculate the angles of each joint at exact

moment and send them to servo drives at the same time. Lastly, a

low-level controller such as a servo drive requires digital signal

processing capability such as PWM in order to control motors

and sensor at the voltage- level side. The modularization of these

functions can increase the convenience of system integration in

terms of the increase of the reusability of modularized functions.

However, if different communication methods among modules

are used, the advantage of the modularization will be reduced.

Therefore, the modularization has to be implemented in terms of

consistency of their communication method. [Fig. 14] shows a

mobile manipulator that modularizes these different functions

into their respective subsystems. The prototype robot consists of

four subsystems. The mobile subsystem uses two wheels for

differential driving locomotion and employs eight sonar sensors

for detecting obstacles. The body has a 1-DOF lift to adjust the

height of the head and arm modules. The arm is a 7-DOF

manipulator, which is controlled by the embedded RT-Linux-

based motion controller.

The head has an RGB+D camera for image processing and

two servo motors for pan and tilt motion. It also contains an

x86_64-based SBC that operates the ROS framework by arbitrating

the required information for communication between the ROS

framework and subsystems. Even though the subsystem in the

[Fig. 13] Comparison of responsiveness

[Fig. 14] Modularized subsystems of the mobile manipulator

[Fig. 15] Constructed prototype and its controllers

382 로봇학회 논문지 제15권 제4호 (2020. 12)

robot operate in different platform, but they can communicate

with each other by using only ROS protocol consistently. [Fig. 15]

shows the controllers used for each subsystem of the constructed

prototype robot and the method to implement ROS protocol in

each controller. The head module used the x86_64-based SBC to

operate Ubuntu Linux and the standard ROS framework. The

arm module used Raspberry Pi 3 SBC that ported RT kernel.

Also, it implemented ROS communication functionality by porting

ROS_M library into its operating system. Lastly, the body and

base subsystems used the constructed Cortex-M4 MCU/DSP

control board that ROS_M library is also ported. Therefore, all

subsystems can communicate with each other by using only ROS

protocol consistently despite their platform difference.

Meanwhile, the modularized subsystems need to provide

convenient combine method. The most widely used combine

method in reconfigurable modular robotic system is daisy chain

that can reduce wires. The signal cables in a daisy chain structure

system don’t need to reach to its master controller or its master

hub because each module in the system routes the packets to the

module attached with it.

[Fig. 16] shows the system structure of a modularized mobile

manipulator. Each subsystem is connected to each other through

ethernet switches that are used to implement an ethernet-based

daisy chain structure. Ethernet switches have extra ports for

subsystem expansion, which enables the robot to be easily

configured in terms of expansion and modification.

For example, if the mobile manipulator currently configured

as a single arm needs to be expanded to dual arms, an additional

arm can be attached using the ethernet switch of the body. In

addition, if the current 1-DOF lift structure body need to be

replaced with more flexible body, such as 2-DOF rotary type, the

new 2-DOF body that fits the mechanical interface with the arm

[Fig. 16] Expandable system of the mobile manipulator [Fig. 17] Recognized subsystems as a ROS_M node

[Fig. 18] Integrated subsystems with the ROS nodes of Gmapping and Moveit packages

이종의 제어 플랫폼들로 구성된 로봇 시스템을 ROS 기반의 시스템으로 손쉽게 통합하기 위한 소프트웨어의 개발 383

and base module can substitute for the existing body. Additional

subsystems such as grippers and contents monitors can also be

added to the switch when implementing each subsystem by the

ROS communication protocol using the ROS_M library. All

nodes in the system can make full closed control loop under

1-kHz control period based on the result showed in section 3.

Finally, [Fig. 17] shows that the subsystems recognized in the

ROS framework. Each subsystem provided topics and services to

the control interfaces for the attached actuators. In addition, for

the actual operation of SLAM and visual servoing, the subsystems

can communicate with the nodes of Gmapping and Moveit

packages provided by the standard ROS framework. [Fig. 18]

shows the subsystems associated with the nodes provided in the

Gmapping and Moveit packages. Note that if a subsystem needs

to be replaced because of changes in requirements, the user can

exchange it with another subsystem that has the same topic and

service interface. Once the replaced subsystem connects to the

network, the system will operate without additional effort at

system integration.

4.2 Limitation and Future Works

In the expandable system presented in this study, the ROS_M

nodes represent the controllers of each functional subsystem that

operate together in the ROS framework. However, no test has

been conducted to verify that data interlocking among subsystems

is stable under the actual operation of the loop control functions

of each controller that controls the actuators and sensors.

After we implement these specific functions in a future study,

we plan to examine whether the proposed system, including the

implementation of high-level services, works organically in the

expandable structure.

5. Conclusion

In this paper, we proposed an expandable robotic system that

can have subsystems removed or added efficiently to respond to

changes in a robot’s environment and tasks. The proposed

system is a structure in which each subsystem is integrated as an

ROS node in an ROS framework by directly supporting an ROS

protocol in the controller of each subsystem. We presented a

developed ROS_M library to implement the ROS protocol in

different subsystem control environments. The results of a latency

measurement test showed the constructed system when using our

ROS_M library can operate a soft real-time-based loop control

function below a 1-kHz control period, as the worst-case round-trip

latency between nodes when ethernet switches were considered

was approximately 587.2 us. Finally, we introduced an expandable

robotic system for implementing a mobile manipulator modularized

into four subsystems. The controllers of each subsystem were

implemented using the ROS_M library on different control

platforms, and they interlocked with other ROS nodes of

Gmapping and Moveit packages under the ROS framework in

terms of software communication.

References

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E.

Berger, R. Wheeler, and A. Ng, “ROS: An Open-Source Robot

Operating System,” ICRA Workshop Open Source Software,

2009, [Online], http://www.willowgarage.com/sites/default/files/

icraoss09-ROS.pdf.

[2] H. Bruyninckx, “Open Robot Control Software: The OROCOS

Project,” 2001 ICRA. IEEE International Conference on Robotics

and Automation, Seoul, South Korea, 2001, DOI: 10.1109/

ROBOT.2001.933002.

[3] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The Player/Stage

Project: Tools for Multi-Robot and Distributed Sensor Systems,”

International Conference on Advanced Robotics (ICAR 2003),

2003, Coimbra, Portugal, pp. 317-323, [Online], https://faculty.

ontariotechu.ca/shi/DMCG/seminar/Robert%20-%2025.09.2013%

20-%20%20The%20PlayerStage%20Project-%20Tools%20for%2

0Multi-Robot%20and%20Distributed%20Sensor%20Systems.pdf.

[4] M. E. Munich, J. Ostrowski, and P. Pirjanian, “ERSP: A

Software Platform and Architecture for the Service Robotics

Industry,” 2005 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Edmonton, Alta., Canada, 2005, DOI:

10.1109/IROS.2005.1545468.

[5] J. Jackson, “Microsoft Robotics Studio: A Technical Introduction,”

IEEE Robotics & Automation Magazine, vol. 14, no. 4, 2007,

DOI: 10.1109/M-RA.2007.905745.

[6] C. Jang, S.-I. Lee, S.-W. Jung, B. Song, R. Kim, S. Kim, and

C.-H. Lee, “OPRoS: A New Component-Based Robot Software

Platform,” ETRI Journal, vol. 32, no. 5, 2010, DOI: 10.4218/

etrij.10.1510.0138.

[7] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins,

“Ros-bridge: Ros for Non-Ros Users,” 15th International Symposium

on Robotics Research, 2011, [Online], http://www.isrr-2011.

org/ISRR-2011/Program_files/Papers/Jenkins-ISRR-2011.pdf.

[8] J. Lee, “Web Applications for Robots Using Rosbridge,” 2012,

[Online], http://cs.brown.edu/research/pubs/theses/masters/2012

/lee.pdf.

384 로봇학회 논문지 제15권 제4호 (2020. 12)

[9] B. Alexander, K. Hsiao, C. Jenkins, B. Suay, and R. Toris,

“Robot Web Tools,” Robotics Automation Magazine, vol. 19, no.

4, 2012, DOI: 10.1109/MRA.2012.2221235.

[10] M. Blaha, M. Krec, P. Marek, T. Nouza, and T. Lejsek, “Rosbridge

Web Interface,” Czech Technical University, Czech Republic,

May, 2013, [Online], https://klein.felk.cvut.cz/w/_media/misc/

projects/nifti/sw/web_interface-report.pdf.

[11] L. Jurišica and R. Murár, “Mobile Robots and Their Subsystems,”

AT&P Journal Plus 1, pp.14-17, 2008, [Online], https://www.

atpjournal.sk/buxus/docs/casopisy/atp_plus/plus_2008_1/plus14

_17.pdf.

[12] S. Pedre, M. Nitsche, F. Pessacg, J. Caccavelli, and P. De

Cristóforis, “Design of a Multi-Purpose Low-Cost Mobile Robot

for Research and Education,” 2014, DOI: 10.1007/978-3-319-

10401-0_17.

[13] H. Gao, S. Lu, G. Tian, and J. Tan, “Vision-integrated Physio-

therapy Service Robot using Cooperating two Arms,” International

Journal on Smart Sensing and Intelligent Systems, vol.7, no. 3,

pp.1024-1043, 2014, [Online], https://exeley.mpstechnologies.

com/exeley/journals/in_jour_smart_sensing_and_intelligent_sys

tems/7/3/pdf/10.21307_ijssis-2017-692.pdf.

[14] M. Migliavacca and A. Zoppi, μROSnode: running ROS on

microcontrollers, ROS Developers Conference, 2013.

[15] M. Migliavacca, A. Bonarini, and M. Matteucci, “Modular

Development of Mobile Robots with Open Source Hardware and

Software Components,” Robot Soccer World Cup, 2013, DOI:

10.1007/978-3-662-44468-9_52.

[16] A. Bonarini, M. Matteucci, M. Migliavacca, and D. Rizzi, “R2P:

An open source hardware and software modular approach to

robot prototyping,” Robotics and Autonomous Systems, 2014,

DOI: 10.1016/j.robot.2013.08.009.

[17] D. A. Cucci, M. Migliavacca, A. Bonarini, and M. Matteucci,

“Development of Mobile Robots using Off-The-Shelf Open-Source

Hardware and Software Components for Motion and Pose Tracking,”

Intelligent Autonomous Systems 13, 2016, DOI: 10.1007/978-

3-319-08338-4_104.

[18] Steffi Paepcke, Morgan Quigley (OSRF): ROS 2 on “Small”

Embedded Systems, [Online], https://www.osrfoundation.org/

morgan-quigley-osrf-ros-2-on-small-embedded-systems,

Accessed: Sept. 28, 2019.

[19] H. S. Kang and D. H. Shin, “OPRoS_M: a Library to Develop a

H/W Device Component of OPRoS Platform,” Intelligent Service

Robotics, 2015, DOI: 10.1007/s11370-015-0168-z.

Hyeong Seok Kang

2013~2016 Mechanical and Information

Engineering, University of Seoul,

Korea (Ph.D.)

2016~ MINTROBOT Co., Ltd., Korea

(CEO/Founder)

Interests: Low-cost robotics, Modular robot system, Gearbox

Dong Won Lee

2010~2016 Mechanical and Information

Engineering, University of Seoul,

Korea (B.S.)

2016~2018 Mechanical and Information

Engineering, University of Seoul,

Korea (M.S.)

Interests: Robotics, Computer Engineering

Dong Hun Shin

1987~1990 Civil Engineering, Carnegie

Mellon University (Ph.D.)

1990~1992 Robotics Institute, Carnegie

Mellon University (Researcher)

1992~1994 Korea Institute of Industrial

Technology (Principal Researcher)

1994~ Mechanical and Information

Engineering, University of Seoul,

Korea (Professor)

Interests: Robotics

