• Title/Summary/Keyword: ROCK inhibitor

Search Result 24, Processing Time 0.033 seconds

Improvement of Cell Viability Using a Rho-associated Protein Kinase (ROCK) Inhibitor in Human Dental Papilla derived Single-induced Pluripotent Stem Cells (ROCK 억제제를 통한 사람 치유두 조직 유래 단일 사람 유도만능줄기세포의 생존성 향상)

  • Shim, Yoo-Jin;Kang, Young-Hoon;Kim, Hyeon-Ji;Kim, Mi-Jeong;Lee, Hyeon-Jeong;Son, Young-Bum;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2019
  • The aim of the present study was to improve the cell viability of human dental papilla derived single-induced pluripotent stem cells (iPSCs) using a Rho-associated protein kinase (ROCK) inhibitor, Y-27632. The iPSCs were produced using an episomal plasmid-based reprogramming method. After cell separation using trypsin, the iPSCs were treated with 0, 0.5, 1, 2.5, 5, 7.5, or $10{\mu}M$ Y-27632 for 5 d. Cell viability increased significantly following the $5{\mu}M$ Y-27632 treatment (p<0.05). When the iPSCs were exposed to medium containing $10{\mu}M$ Y-27632 for 0, 1, 2, 3, 4, and 5 d, the cell viability rate increased significantly in accordance with the cell viability rate (p<0.05). To evaluate the effect of the Y-27632 treatment on stemness characteristics, the expression of stem cell-specific transcripts and telomerase activity were investigated in the iPSCs treated with $10{\mu}M$ Y-27632 for 5 d. The expression levels of stem cell-specific transcripts, such as OCT-4, NONOG, and SOX-2, and telomerase activity were not significantly different in the iPSCs treated with $10{\mu}M$ Y-27632 as compared with those of untreated control iPSCs (p>0.05). Taken together, the results demonstrated that cell viability can be improved by treatment with the ROCK inhibitor Y-27632, without losing iPSC stemness characteristics.

Signals of MLCK and ROCK Pathways Triggered via Lymphotoxin β Receptor are Involved in Stress Fiber Change of Fibroblastic Reticular Cells (FRC에서 Lymphotoxin β receptor의 자극은 MLCK와 ROCK의 이중 신호전달 경로를 통해 stress fiber 변화에 관여)

  • Kim, Dae Sik;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.256-264
    • /
    • 2019
  • Lymphotoxin ${\beta}$ receptor ($LT{\beta}R$), a member of the tumor necrosis factor receptor family, plays an important role in lymphoid tissue's architecture and organogenesis. In contrast, MLCK and ROCK play critical roles in the regulation of stress fiber (SF) formation in cells. To determine whether $LT{\beta}R$ stimulation in fibroblastic reticular cells (FRCs) is involved in these signaling pathways, myosin light chain kinase inhibitor-7 (ML-7) was used to inhibit them. ML7-treated FRCs completely blocked SFs and showed retraction and shrinkage processes comparable to those observed in agonistic anti-$LT{\beta}R$ antibody-treated cells. The inhibition of ROCK activity with Y27632-induced changes in actin cytoskeleton organization and cell morphology in FRCs. Actin bundles rearranged into SFs, and phospho-myosin light chain (p-MLC) co-localized in FRCs. We checked the level of Rho-guanosine diphosphate (RhoGDP)/guanosine triphosphate (GTP) exchange activity using FRC lysate. When $LT{\beta}R$ was stimulated with agonistic anti-$LT{\beta}R$ antibodies, Rho-GDP/GTP exchange activity was markedly reduced. Regarding $LT{\beta}R$ signaling with a focus on MLCK inhibition, we showed that the phosphorylation of MLCs was reduced by $LT{\beta}R$ stimulation in FRCs. Cytoskeleton components, such as tubulin, b-actin, and phospho-ezrin proteins acting as membrane-cytoskeleton linkers, were produced in de-phosphorylation, and they reduced expression in agonistic anti-$LT{\beta}R$ antibody-treated FRCs. Collectively, the results suggested that MLCK and ROCK were simultaneously responsible for SF regulation triggered by $LT{\beta}R$ signaling in FRCs.

Rho-associated Kinase is Involved in Preimplantation Development and Embryonic Compaction in Pigs

  • Son, Myeong-Ju;Park, Jin-Mo;Min, Sung-Hun;Park, Hum-Dai;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • The first morphogenetic event of preimplantation development, compaction, was required efficient production of porcine embryos in vitro. Compaction of the porcine embryo, which takes place at post 4-cell stage, is dependent upon the adhesion molecule E-cadherin. The E-cadherin through ${\beta}$-catenin contributes to stable cell-cell adhesion. Rho-associated kinase (ROCK) signaling was found to support the integrity of E-cadherin based cell contacts. In this study, we traced the effects of ROCK-1 on early embryonic development and structural integrity of blastocysts in pigs. Then, in order to gain new insights into the process of compaction, we also examined whether ROCK-1 signaling is involved in the regulation of the compaction mediated by E-cadherin of cellular adhesion molecules. As a result, real-time RT-PCR analysis showed that the expression of ROCK-1 mRNA was presented throughout porcine preimplantation stages, but not expressed as consistent levels. Thus, we investigated the blastocyst formation of porcine embryos treated with LPA and Y27632. Blastocysts formation and their qualities in LPA treated group increased significantly compared to those in the Y27632-treated group (p < 0.05). Then, to determine whether ROCK-1 associates embryonic compaction, we explored the effect of activator and/or inhibitor of ROCK-1 on compaction of embryos in pigs. The rate of compacted morula in LPA treated group was increased compared to that in the Y27632-treated group (39.7 vs 12.0%). Furthermore, we investigated the localization and expression pattern of E-cadherin at 4-cell stage porcine embryos in both LPA- and Y27632-treated groups by immunocytochemical analysis and Western blot analysis. The expression of E-cadherin was increased in LPA-treated group compared to that in the Y27632-treated group. The localization of E-cadherin in LPA-treated group was enriched in part of blastomere contacts compared to that Y27632-treated group. ROCK-1 as a crucial mediator of embryo compaction may plays an important role in regulating compaction through E-cadherin of the cell adhesion during the porcine preimplantation embryo. We concluded that ROCK-1 gene may affect the developmental potential of porcine blastocysts through regulating embryonic compaction.

The Molecular Profiling of a Teleostan Counterpart of Follistatin, Identified from Rock Bream Oplegnathus fasciatus which Reveals its Transcriptional Responses against Pathogenic Stress

  • Herath, H.M.L.P.B;Priyathilaka, Thanthrige Thiunuwan;Elvitigala, Don Anushka Sandaruwan;Umasuthan, Navaneethaiyer;Lee, Jehee
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.273-281
    • /
    • 2015
  • The follistatin (FST) gene encodes a monomeric glycoprotein that plays a role in binding and inhibiting the functions of members of the transforming growth factor (TGF)-${\beta}$ superfamily. Thus, FST facilitates a wide variety of functions, ranging from muscle growth, to inflammation and immunity. In this study, we sought to characterize an FST counterpart, RbFST, which was identified from rock bream Oplegnathus fasciatus. The RbFST cDNA sequence (2,419 bp) contains a 933-bp open reading frame (ORF) that encodes a putative amino acid sequence for RbFST (35 kDa). The putative amino acid sequence contains a Kazal-type serine protease inhibitor domain (51-98 residues) and an EF-hand, calcium-binding domain (191-226 residues). Additionally, this sequence shares a high identity (98.7%) with the Siniperca chuatsi FST sequence, with which it also has the closest evolutionary relationship according to a phylogenetic study. Omnipresent distribution of RbFST transcripts were detected in the gill, liver, spleen, head kidney, kidney, skin, muscle, heart, brain, and intestine of healthy animals, with significantly higher expression levels in the heart, followed by the liver tissue. Under pathogenic stress caused by two bacterial pathogens, Streptococcus iniae and Edwardsiella tarda, RbFST transcription was found to be significantly up-regulated. Altogether, our findings suggest the putative role of RbFST in immune related responses against pathogenic infections, further prefiguring its significance in rock bream physiology.

Differential expression of the enzymes regulating myosin light chain phosphorylation are responsible for the slower relaxation of pulmonary artery than mesenteric artery in rats

  • Seung Beom Oh;Suhan Cho;Hyun Jong Kim;Sung Joon Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.49-57
    • /
    • 2024
  • While arterial tone is generally determined by the phosphorylation of Ser19 in myosin light chain (p-MLC2), Thr18/Ser19 diphosphorylation of MLC2 (pp-MLC2) has been suggested to hinder the relaxation of smooth muscle. In a dual-wire myography of rodent pulmonary artery (PA) and mesenteric artery (MA), we noticed significantly slower relaxation in PA than in MA after 80 mM KCl-induced condition (80K-contraction). Thus, we investigated the MLC2 phosphorylation and the expression levels of its regulatory enzymes; soluble guanylate cyclase (sGC), Rho-A dependent kinase (ROCK) and myosin light chain phosphatase target regulatory subunit (MYPT1). Immunoblotting showed higher sGC-α and ROCK2 in PA than MA, while sGC-β and MYPT1 levels were higher in MA than in PA. Interestingly, the level of pp-MLC2 was higher in PA than in MA without stimulation. In the 80K-contraction state, the levels of p-MLC2 and pp-MLC2 were commonly increased. Treatment with the ROCK inhibitor (Y27632, 10 µM) reversed the higher pp-MLC2 in PA. In the myography study, pharmacological inhibition of sGC (ODQ, 10 µM) slowed relaxation during washout, which was more pronounced in PA than in MA. The simultaneous treatment of Y27632 and ODQ reversed the impaired relaxation in PA and MA. Although treatment of PA with Y27632 alone could increase the rate of relaxation, it was still slower than that of MA without Y27632 treatment. Taken together, we suggest that the higher ROCK and lower MYPT in PA would have induced the higher level of MLC2 phosphorylation, which is responsible for the characteristic slow relaxation in PA.

Activation of Small GTPases RhoA and Rac1 Is Required for Avian Reovirus p10-induced Syncytium Formation

  • Liu, Hung-Jen;Lin, Ping-Yuan;Wang, Ling-Rung;Hsu, Hsue-Yin;Liao, Ming-Huei;Shih, Wen-Ling
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.396-403
    • /
    • 2008
  • The first ORF of the ARV S1133 S1 segment encodes the nonstructural protein p10, which is responsible for the induction of cell syncytium formation. However, p10-dependent signaling during syncytium formation is fully unknown. Here, we show that dominant negative RhoA, Rho inhibitor C3 exoenzyme, ROCK/Rho-kinase inhibitor Y-27632 and Rac1 inhibitor NSC23766 inhibit p10-mediated cell fusion. p10 over-expression is concomitant with activation and membrane translocation of RhoA and Rac1, but not cdc42. RhoA and Rac1 downstream events, including JNK phosphorylation and transcription factor AP-1 and $NF-{\kappa}B$ activation, as well as MLC expression and phosphorylation are simultaneously activated by p10. p10 point mutant T13M possessed 20% fusion-inducing ability and four p10 fusion-deficient mutants V15M, V19M, C21S and L32A reduced or lost their ability to activate RhoA and Rac1 signaling. We conclude that p10-mediated syncytium formation proceeds by utilizing RhoA and Rac1-dependent signaling.

Formation characteristics of gas hydrate in sediments (퇴적층에서의 가스 하이드레이트 생성 특성)

  • Lee, Jae-Hyoung;Lee, Won-Suk;Kim, Se-Joon;Kim, Hyun-Tae;Huh, Dae-Gi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.630-633
    • /
    • 2005
  • Some gases can be formed into hydrate by physical combination with water under appropriate temperature and pressure condition. Besides them, it was found that the pore size of the sediments can affect the formation and dissociation of hydrate. In this study, formation temperatures of carbon dioxide and methane hydrate have been measured using isobaric method to investigate the effects of flow rates of gases on formation condition of hydrate in porous rock samples. The flow rates of gases were controlled using a mass flow controller. To minimize Memory effect, system temperature increased for the dissociation of gas hydrates and re-established the initial saturation. The results show that the formation temperature of hydrate decreases with increasing the injection flow rate of gas. This indicates that the velocity of gas in porous media may act as kinds of inhibitor for the formation of hydrate.

  • PDF

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 6. Studies on Friction and Wear Properties of Carbon-Carbon Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구 : 6. 탄소/탄소 복합재료의 마찰 및 마모특성)

  • Park, Soo-Jin;Seo, Min-Kang;Lee, Jae-Rock
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.133-141
    • /
    • 2001
  • The friction and wear properties of carbon-carbon composites made with different weight percent of $MoSi_2$ as an oxidation inhibitor were investigated using a constant speed wear test apparatus in an oxidation environment. The results indicated the carbon-carbon composites undergoing an abrupt transition of friction coefficient, from low-friction behavior(${\mu}$=0.15~0.2) during normal wear regime to the high-friction behavior(${\mu}$=0.5~0.6) during dusting wear regime at the frictional temperature range of 150~180${\circ}C$. The existence of temperature-dependent friction and wear regimes implied that the performance of specimen made with carbon-carbon composites was markedly affected by the thermal properties of the composites. The carbon-carbon composites filled with MoSi2 exhibited two times lower coefficient of friction and wear rate in comparison with the composites without $MoSi_2$. Especially, the composites containing 4wt% $MoSi_2$ filler showed a significantly improved activation energy for wear due to the reduction of both the porosity and powdery debris film formation on sliding surface when compared to those without $MoSi_2$.

  • PDF

Characterization of the Immune Regulation Function of Fibroblastic Reticular Cells Originating from Lymph Node Stroma (림프절 스트로마 유래 fibroblastic reticular cell의 면역조절 기능에 대한 특성 규명)

  • Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.789-795
    • /
    • 2016
  • A lymph node (LN) is one of the secondary lymphoid organs. An LN consists of a complicated 3 dimensional frame structure and several stromal cells. Fibroblastic reticular cells (FRC) are distributed in the T zone for interaction with T cells. FRC secrete homing chemokines such as CCL19 and CCL21. Moreover, FRC play a pivotal role in the production of extracellular matrix (ECM) into LN for ECM reorganization against pathogen infections. However, not much is known about the involvement of the immune reaction of FRC. The present report is for the characterization of FRC on immune response. For this, FRC were positioned in several infected situations such as co-culture with macrophage, lipopolysaccharide (LPS), and TNFα stimulation. When a co-culture between FRC and macrophage was performed, a morphological change in FRC was observed, and empty space between FRCs was created by this change. The soluble ICAM-1 protein level was up-regulated by co-culturing with Raw264.7 and the treatment of the ROCK inhibitor Y27632. The activity of matrix metalloproteinase (MMP) was up-regulated by LPS onto FRC. Furthermore, the inflammatory cytokine TNFα regulated the expression of ECM in FRC by a gene chip assay. Collectively, it suggests that FRC are involved in immune reactions.