Acknowledgement
This work was supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT, Republic of Korea (grants NRF-2018R1D1A1B07048998 and NRF-2021R1A2C2007243), and also supported by 2023 Research Promoting program by Seoul National University Hospital.
References
- Guyton AC, Hall JE. Textbook of medical physiology. 10th ed. Saunders; 2000.
- Patton HD. Textbook of physiology: excitable cells and neurophysiology. W. B. Saunders; 1989.
- Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol. 2012;2:675-709. https://doi.org/10.1002/cphy.c100081
- Suresh K, Shimoda LA. Lung circulation. Compr Physiol. 2016;6:897-943. https://doi.org/10.1002/cphy.c140049
- Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol. 1990;259:C3-C18. https://doi.org/10.1152/ajpcell.1990.259.1.C3
- Dorn GW 2nd, Becker MW. Thromboxane A2 stimulated signal transduction in vascular smooth muscle. J Pharmacol Exp Ther. 1993;265:447-456.
- Dupuis J, Jasmin JF, Prie S, Cernacek P. Importance of local production of endothelin-1 and of the ET(B)Receptor in the regulation of pulmonary vascular tone. Pulm Pharmacol Ther. 2000;13:135-140. https://doi.org/10.1006/pupt.2000.0242
- Muramatsu M, Rodman DM, Oka M, McMurtry IF. Endothelin-1 mediates nitro-L-arginine vasoconstriction of hypertensive rat lungs. Am J Physiol. 1997;272:L807-L812. https://doi.org/10.1152/ajplung.1997.272.5.L807
- Kim HJ, Yoo HY. Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats. Korean J Physiol Pharmacol. 2016;20:641-647. https://doi.org/10.4196/kjpp.2016.20.6.641
- Boron WF, Boulpaep EL. Medical physiology. 3rd ed. Elsevier; 2016.
- Ogut O, Brozovich FV. Regulation of force in vascular smooth muscle. J Mol Cell Cardiol. 2003;35:347-355. https://doi.org/10.1016/S0022-2828(03)00045-2
- Walsh MP. Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life. 2011;63:987-1000. https://doi.org/10.1002/iub.527
- Takeya K, Wang X, Sutherland C, Kathol I, Loutzenhiser K, Loutzenhiser RD, Walsh MP. Involvement of myosin regulatory light chain diphosphorylation in sustained vasoconstriction under pathophysiological conditions. J Smooth Muscle Res. 2014;50:18-28. https://doi.org/10.1540/jsmr.50.18
- Katsumata N, Shimokawa H, Seto M, Kozai T, Yamawaki T, Kuwata K, Egashira K, Ikegaki I, Asano T, Sasaki Y, Takeshita A. Enhanced myosin light chain phosphorylations as a central mechanism for coronary artery spasm in a swine model with interleukin-1beta. Circulation. 1997;96:4357-4363. https://doi.org/10.1161/01.CIR.96.12.4357
- Shimokawa H, Seto M, Katsumata N, Amano M, Kozai T, Yamawaki T, Kuwata K, Kandabashi T, Egashira K, Ikegaki I, Asano T, Kaibuchi K, Takeshita A. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res. 1999;43:1029-1039. https://doi.org/10.1016/S0008-6363(99)00144-3
- Obara K, Nishizawa S, Koide M, Nozawa K, Mitate A, Ishikawa T, Nakayama K. Interactive role of protein kinase C-delta with rho-kinase in the development of cerebral vasospasm in a canine two-hemorrhage model. J Vasc Res. 2005;42:67-76. https://doi.org/10.1159/000083093
- Mam V, Tanbe AF, Vitali SH, Arons E, Christou HA, Khalil RA. Impaired vasoconstriction and nitric oxide-mediated relaxation in pulmonary arteries of hypoxia- and monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Exp Ther. 2010;332:455-462. https://doi.org/10.1124/jpet.109.160119
- Cho S, Namgoong H, Kim HJ, Vorn R, Yoo HY, Kim SJ. Downregulation of soluble guanylate cyclase and protein kinase G with upregulated ROCK2 in the pulmonary artery leads to thromboxane A2 sensitization in monocrotaline-induced pulmonary hypertensive rats. Front Physiol. 2021;12:624967.
- Cho S, Oh SB, Kim HJ, Kim SJ. T18/S19 diphosphorylation of myosin regulatory light chain impairs pulmonary artery relaxation in monocrotaline-induced pulmonary hypertensive rats. Pflugers Arch. 2023;475:1097-1112. https://doi.org/10.1007/s00424-023-02836-6
- Schermuly RT, Stasch JP, Pullamsetti SS, Middendorff R, Muller D, Schluter KD, Dingendorf A, Hackemack S, Kolosionek E, Kaulen C, Dumitrascu R, Weissmann N, Mittendorf J, Klepetko W, Seeger W, Ghofrani HA, Grimminger F. Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension. Eur Respir J. 2008;32:881-891. https://doi.org/10.1183/09031936.00114407
- Shimizu T, Fukumoto Y, Tanaka S, Satoh K, Ikeda S, Shimokawa H. Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice. Arterioscler Thromb Vasc Biol. 2013;33:2780-2791. https://doi.org/10.1161/ATVBAHA.113.301357
- Sutherland C, Walsh MP. Myosin regulatory light chain diphosphorylation slows relaxation of arterial smooth muscle. J Biol Chem. 2012;287:24064-24076. https://doi.org/10.1074/jbc.M112.371609
- Pfitzer G. Invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol (1985). 2001;91:497-503. https://doi.org/10.1152/jappl.2001.91.1.497
- Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273:245-248. https://doi.org/10.1126/science.273.5272.245
- Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83:1325-1358. https://doi.org/10.1152/physrev.00023.2003
- Butler T, Paul J, Europe-Finner N, Smith R, Chan EC. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am J Physiol Cell Physiol. 2013;304:C485-C504. https://doi.org/10.1152/ajpcell.00161.2012
- Grassie ME, Sutherland C, Ulke-Lemee A, Chappellaz M, Kiss E, Walsh MP, MacDonald JA. Cross-talk between Rho-associated kinase and cyclic nucleotide-dependent kinase signaling pathways in the regulation of smooth muscle myosin light chain phosphatase. J Biol Chem. 2012;287:36356-36369. https://doi.org/10.1074/jbc.M112.398479
- Sakamoto K, Hori M, Izumi M, Oka T, Kohama K, Ozaki H, Karaki H. Inhibition of high K+-induced contraction by the ROCKs inhibitor Y-27632 in vascular smooth muscle: possible involvement of ROCKs in a signal transduction pathway. J Pharmacol Sci. 2003;92:56-69. https://doi.org/10.1254/jphs.92.56
- Mita M, Yanagihara H, Hishinuma S, Saito M, Walsh MP. Membrane depolarization-induced contraction of rat caudal arterial smooth muscle involves Rho-associated kinase. Biochem J. 2002;364:431-440. https://doi.org/10.1042/bj20020191
- Alessi D, MacDougall LK, Sola MM, Ikebe M, Cohen P. The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem. 1992;210:1023-1035. https://doi.org/10.1111/j.1432-1033.1992.tb17508.x
- Shi F, Stewart RL Jr, Perez E, Chen JY, LaPolt PS. Cell-specific expression and regulation of soluble guanylyl cyclase alpha 1 and beta 1 subunits in the rat ovary. Biol Reprod. 2004;70:1552-1561. https://doi.org/10.1095/biolreprod.103.025510
- Stuehr DJ, Misra S, Dai Y, Ghosh A. Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem. 2021;296:100336.
- Kostic TS, Andric SA, Stojilkovic SS. Receptor-controlled phosphorylation of alpha 1 soluble guanylyl cyclase enhances nitric oxide-dependent cyclic guanosine 5'-monophosphate production in pituitary cells. Mol Endocrinol. 2004;18:458-470. https://doi.org/10.1210/me.2003-0015
- Cabilla JP, Diaz Mdel C, Machiavelli LI, Poliandri AH, Quinteros FA, Lasaga M, Duvilanski BH. 17 beta-estradiol modifies nitric oxide-sensitive guanylyl cyclase expression and down-regulates its activity in rat anterior pituitary gland. Endocrinology. 2006;147:4311-4318. https://doi.org/10.1210/en.2006-0367
- Cabilla JP, Ronchetti SA, Nudler SI, Miler EA, Quinteros FA, Duvilanski BH. Nitric oxide sensitive-guanylyl cyclase subunit expression changes during estrous cycle in anterior pituitary glands. Am J Physiol Endocrinol Metab. 2009;296:E731-E737. https://doi.org/10.1152/ajpendo.90795.2008