• Title/Summary/Keyword: ROBOT

Search Result 10,730, Processing Time 0.037 seconds

Indoor Localization System for Field Robot System of Power Plant Facilities Surveillance (발전 설비 감시 점검용 로봇 시스템을 위한 실내 위치 인식 시스템 설계)

  • Jeong, Chang-Ki;Lee, Jae-Kyung;Park, Joon-Young;Cho, Byung-Hak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2308-2312
    • /
    • 2008
  • As power plant facilities are being deteriorated, their safety is getting more important, and more routine surveillance is being required. For this purpose, this paper presents an indoor localization system for field robot system which performs the surveillance of power plant facilities instead of human workers from the viewpoint of the workers' safety and work efficiency.

A RFID-Based Multi-Robot Management System Available in Indoor Environments (실내 환경에서 운영 가능한 RFID 기반 멀티 로봇 관리 시스템)

  • An, Sang-Sun;Shin, Sung-Oog;Lee, Jeong-Oog;Baik, Doo-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.13-24
    • /
    • 2008
  • The multi robot operation technique has emerged as one of the most important research subjects that focus on minimizing redundancy in space exploration and maximizing the efficiency of operation. For an efficient operation of the multi robot systems, the movement of each Single robot in the multi robot systems should be properly observed and controlled. This paper suggests Multi Robot Management System to minimize redundancy in space exploration by assigning exploration space to each robot efficiently to take advantage of the RFID. Also, this paper has suggested fault tolerance technique that detects disable Single robot and substitute it by activated Single robot in order to ensure overall exploration and improve efficiency of exploration. Proposed system overcomes previous fault that it is difficult for central server to detect exact position of robot by using RFID system and Home Robot. Designated Home robot manages each Single robot efficiently and assigns the best suited space to Single robot by using RFID Tag Information. Proposed multi robot management system uses RFID for space assignment, Localization and Mapping efficiently and not only maximizes the efficiency of operation, but also ensures reliability by supporting fault-tolerance, compared with Single robot system. Also, through simulation, this paper proves efficiency of spending time and redundancy rates between multi robot management applied by proposed system and not applied by proposed system.

  • PDF

Design and Validation of Robot Curriculum in Education for the Gifted Elementary Students of Computer Science (초등정보과학영재를 위한 로봇교육과정의 설계 및 검증)

  • Lee, Jae-Ho;Nam, Gil-Hyun
    • Journal of Gifted/Talented Education
    • /
    • v.19 no.3
    • /
    • pp.669-695
    • /
    • 2009
  • In the 21st century, there will be a robot revolution. Only several years ago, industrial robots were the mainstream in the robot market; however, diverse type of robots are currently entering into our daily lives for various purposes, and the robot that thinks and behaves very similarly to human will appear in the near future. However, there is a critical view about the robot period. This means that the robot revolution will change even the framework of our entire society and human life style, and it is necessary to have robot education. It is necessary to start robot education in the elementary school curriculum with a view to enhancing interest in basic science and scientific technology and cultivating creative talents who may adapt themselves to a robotic society. However, there is no systematic robot curriculum owing to insufficient perception of the need of robot education and the educational utilization of robots. Under these circumstances, robot education is largely dependent on education for students with special talents and aptitudes run by private organizations. This paper conducted the following research in order to develop a robot curriculum in education for the gifted elementary students of computer science. First, the paper identified problems by analyzing the robot curriculum from a micro perspective after selecting three organizations that are relatively well perceived out of private organizations that operate robot education for the gifted elementary students of computer science. Second, the paper developed a robot curriculum in education for the gifted elementary students of computer science based on the framework of a robot curriculum run by private sector. Third, the validity of the robot curriculum developed in this paper was verified by a professional group comprising mainly persons in charge of robot curriculum development at private sector and lecturers for robot education for the gifted elementary students of computer science.

Development of humanoid robot for the robot platform (로봇 플랫폼을 위한 이족보행로봇 개발)

  • Ohm, Woo-Yong;Yi, Chong-Ho
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.136-142
    • /
    • 2006
  • As the function and interface for controlling the robot is more complicated, the robot platform which can link effectively between software and hardware is need to develop the robot easily. In this paper, we developed a humanoid robot that interests in robot industry part for robot platform with network communication function.

Face Recognition Using Tensor Subspace Analysis in Robot Environments (로봇 환경에서 텐서 부공간 분석기법을 이용한 얼굴인식)

  • Kim, Sung-Suk;Kwak, Keun-Chang
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.300-307
    • /
    • 2008
  • This paper is concerned with face recognition for human-robot interaction (HRI) in robot environments. For this purpose, we use Tensor Subspace Analysis (TSA) to recognize the user's face through robot camera when robot performs various services in home environments. Thus, the spatial correlation between the pixels in an image can be naturally characterized by TSA. Here we utilizes face database collected in u-robot test bed environments in ETRI. The presented method can be used as a core technique in conjunction with HRI that can naturally interact between human and robots in home robot applications. The experimental results on face database revealed that the presented method showed a good performance in comparison with the well-known methods such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) in distant-varying environments.

  • PDF

Factors Affecting the Intimacy Level Between Children and Robots (아동-로봇 친밀성에 영향을 미치는 요인에 관한 탐색적 연구)

  • Shin, Namin;Lee, Sunhee
    • Korean Journal of Child Studies
    • /
    • v.29 no.5
    • /
    • pp.97-111
    • /
    • 2008
  • This paper presents three related experiments designed to identify factors that may affect the level of intimacy between children and a robot placed in a kindergarten setting. In total, 68 children aged three to five took part in the experiments, where they were instructed to share four or five stickers with a robot as they wished. Data were collected by means of video-taping and by interviewing the motivations of the children for their conducts in the experiment. The results of the study suggest the following factors that may affect the extent to which a child feels intimacy towards a robot: gender, age, prior experiences with a robot, interaction time with a robot, and the perception of robot appearance design.

  • PDF

The design of wall-climbing underwater robot system (수중 벽면 주행 기구의 설계)

  • 김병만;김경훈;박영수;박기용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.237-240
    • /
    • 1997
  • The design of underwater inspection robot system is presented. This robot system is designed for wall inspection in the nuclear plant facility. This paper describes the major components of the robot and its structures. This robot system is consisted of three parts : mechanical electrical and sensing pail. The main problem of designing mechanical part is to select the mechanism of driving. In this system the propeller driving mechanism is selected which can be move the robot continuously. For reducing the size of robot, we designed the CPU and motor controller board. The sensor system is consisted of two parts. One is environment monitoring part and the other is robot localization system.

  • PDF

Development of a Bio-mimetic Quadruped Walking Robot with Waist Joint

  • Kim, Dong-Sik;Park, Se-Hoon;Kim, Kyung-Ho;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1530-1534
    • /
    • 2004
  • This paper presents a novel bio-mimetic quadruped walking robot with a waist joint, which connects the front and the rear parts of the body. The new robot, called ELIRO-1(Eating LIzard RObot version 1), can bend its body while the legs is transferred, thereby increasing the stride and speed of the robot. The waist-jointed walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. We design the mechanical structure of the robot, which is small and light to have high movability and high degree of human friendship. In this paper, we describe characteristics of the waist joint and leg mechanism as well as the analysis using ADAMS to select appropriate actuators. In addition, a hardware and software of the controller of ELIRO-1 are described.

  • PDF

Path Following Control of Mobile Robot Using Lyapunov Techniques and PID Cntroller

  • Jin, Tae-Seok;Tack, Han-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Path following of the mobile robot is one research hot for the mobile robot navigation. For the control system of the wheeled mobile robot(WMR) being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive following controller based on the PID for mobile robot path following. The method uses a non-linear model of mobile robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven nonholonomic mobile robot is carried out in the velocity and orientation tracking control of the nonholonomic WMR. The simulation results of wheel type mobile robot platform are given to show the effectiveness of the proposed algorithm.