• 제목/요약/키워드: RO(Reverse Osmosis)

검색결과 230건 처리시간 0.021초

회전 역삼투 분리막 여과 (Rotating Reverse Osmosis Membrane Filtration)

  • Sangho Lee;Richard M. Lueptow
    • 멤브레인
    • /
    • 제13권3호
    • /
    • pp.131-142
    • /
    • 2003
  • 원통형 회전 역삼투법은 높은 전단력과 유체의 불안정성을 결합시켜 막오염을 감소시키는 동적 여과방법이다. 이 논문은, 회전여과의 물리적 특성, 물질전달과 농도분극 현상, 이론적 및 실험적 해석, 사례연구 등 회전역삼투법에 대한 최근의 연구를 요약해서 보여준다.

역삼투 분리막 표면 특성의 내오염성 상관 관계 연구 (Study of Surface Properties on Fouling Resistance of Reverse Osmosis Membranes)

  • 김노원
    • 멤브레인
    • /
    • 제12권1호
    • /
    • pp.28-40
    • /
    • 2002
  • 본 연구는 복합 박막 활성층의전기적/분자 구조적인 특성이 오염성에 어떤 영향을 미치는가를 조사하였다. 복합 박막 형태의 폴리아미드계 역삼투 분리막에 대한 오염 거동 현상을 이해하는데 있어 표면 구조와 표면 전하의 연구는 매우 효과적이다. AFM 전자현미경을 이용한 표면 구조 분석과 EKA 전위차 측정기를 통한 표면 전하의 분석 결과는 역삼투 분리막의 오염에 영향을 미치는 중요한 인자를 보여주고 있다. 복합막의 활성층이 중성에 가까울수록, 조도 차가 작을수록 역삼투막의 유량 감소 속도는 줄어든다.

Design of optimal PID controller for the reverse osmosis using teacher-learner-based-optimization

  • Rathore, Natwar S.;Singh, V.P.
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.129-136
    • /
    • 2018
  • In this contribution, the control of multivariable reverse osmosis (RO) desalination plant using proportional-integral-derivative (PID) controllers is presented. First, feed-forward compensators are designed using simplified decoupling method and then the PID controllers are tuned for flux (flow-rate) and conductivity (salinity). The tuning of PID controllers is accomplished by minimization of the integral of squared error (ISE). The ISEs are minimized using a recently proposed algorithm named as teacher-learner-based-optimization (TLBO). TLBO algorithm is used due to being simple and being free from algorithm-specific parameters. A comparative analysis is carried out to prove the supremacy of TLBO algorithm over other state-of-art algorithms like particle swarm optimization (PSO), artificial bee colony (ABC) and differential evolution (DE). The simulation results and comparisons show that the purposed method performs better in terms of performance and can successfully be applied for tuning of PID controllers for RO desalination plants.

스마트 워터 그리드 내에서 워터 블렌딩을 고려한 역삼투 해수담수화 플랜트 설계 (Design for seawater reverse osmosis plant using water blending in smart water grid)

  • 이홍주;박한배;우달식;김수한
    • 상하수도학회지
    • /
    • 제29권1호
    • /
    • pp.89-96
    • /
    • 2015
  • Smart water grid is a water network with communication to save water and energy using various water resources. In smart water grid, water product from the various sources can be blended to be supplied to end-users. The product water blending was reported by literatures while feed water blending has been rarely reported so far. In this work, a commercial reverse osmosis (RO) system design software provided by a membrane manufacturer was used to elucidate the effect of feed water blending on the performance of seawater reverse osmosis (SWRO) plant. Fresh water from exisiting water resource was assumed to be blended to seawater to decrease salt concentration of the RO feed water. The feed water blending can simplify the RO system from double to single pass and decrease seawater intake amount, the unit prices of the RO system components including high pressure pump, and operation risk. Due to the increase in RO plant capacity with the feed water blending, however, the RO membrane area and total power consumption increase at higher water blending rates. Therefore, a specific benefit-cost analysis should be carried out to apply the feed water blending to SWRO plants.

역삼투막을 이용한 해수담수화 플랜트에서 전처리 공정 기술 (An Overview of the Pretreatment Processes in Seawater Desalination Plants using Reverse Osmosis Membranes)

  • 안창훈;이원일;윤제용
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.811-823
    • /
    • 2009
  • Seawater desalination process using a reverse osmosis (RO) membrane has been considered as one of the most promising technologies in solving the water scarcity problems in many arid regions around the world. To protect RO membrane in the process, a thorough understanding of the pretreatment process is particularly needed. Seawater organic matters (SWOMs) may form a gel layer on the membrane surface, which will increase a concentration polarization. As the SWOMs can be utilized as a substrate, membrane biofouling will be progressed on the RO membrane surface, resulting in the flux decline and increase of trans-membrane pressure drop and salt passage. In the middle of disinfection, an optimal chlorine dosage and neutralizer (sodium bisulfite, SBS) should be practiced to prevent oxidizing the surface of RO membranes. Additional fundamental research including novel non-susceptible biofouling membranes would be necessary to provide a guide line for the proper pretreatment process.

Effect of intermittent operation modes on performance of reverse osmosis (RO) membrane in desalination and water treatment

  • Yang, Heungsik;Choi, Jihyeok;Choi, Yongjun;Lee, Sangho
    • Membrane and Water Treatment
    • /
    • 제13권1호
    • /
    • pp.39-49
    • /
    • 2022
  • Seawater desalination is doubtlessly a viable option to supply fresh drinking water. Nevertheless, RO (reverse osmosis) desalination plants in specific areas may be intermittently operated to match the imbalance between water demand and supply. Although a handful of works have been done on other membrane systems, few studies have attempted to mitigate fouling in intermittent RO systems. Accordingly, the objectives of this paper were to examine the effect of the intermittent operation on RO fouling; and to compare four intermittent operation modes including feed solution recirculation, membrane storage in the feed solution, deionized water (DI) recirculation, and membrane storage in DI water. Results showed that intermittent operation reduced RO fouling under several conditions. However, the extents of fouling mitigation were different depending on the feed conditions, foulant types, and membrane lay-up methods. When the feed solution was recirculated during the lay-up, the restoration of the flux was less significant than that by the feed solution feed-up. The use of deionized water during the lay-up was effective to restore flux, especially when the feed solution contains scale-forming salts (CaSO4) and/or colloidal silica.

The Major Developments of the Evolving Reverse Osmosis Membranes and Ultrafiltration Membranes

  • Kurihara, Masaru
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1991년도 추계 총회 및 학술발표회
    • /
    • pp.9-16
    • /
    • 1991
  • The current status of reverse osmosis and ultrafiltration membranes are reviewed with the view for the future. In the case of reverse osmosis (RO) membranes, as examples, new crosslinked aromatic polyamide membranes exhibited the superior separation performance with the sufficient water permeability, the high tolerance for oxidizing agents and chemicals. Ultrafiltration (UF) membrane based on poly(phenylene sulfide sulfone) (PPSS) also exibited the superior separation performance with the high solvent, heat and fouling resistance.

  • PDF

정수기용 역삼투 폐분리막 필터의 세정 및 성능 향상 연구 (Cleaning of the Waste Reverse Osmosis Membrane Filters for the Household Water Purifier and Their Performance Enhancement Study)

  • 조영주;임지원
    • 멤브레인
    • /
    • 제27권3호
    • /
    • pp.232-239
    • /
    • 2017
  • 본 연구에서는 사용 후 폐기되는 정수기용 역삼투(Reverse Osmosis; RO)막 필터를 세정하여 새 필터의 수준으로 복원시키는 연구를 수행하였다. 화학적 세정액으로는 수산화나트륨, 중아황산나트륨, EDTA용액을 사용하였으며 마이크로버블 발생 장치와 함께 in-situ의 방법으로 세정하였다. EDTA를 0.1%의 농도로 제조한 뒤 마이크로버블과 함께 사용하여 30분 세정하였을 때 가장 좋은 결과를 나타내었다. 이때 폐 필터와 세정 후 폐필터의 성능을 비교해 보았을 때 투과도는 19.9%, 회수율은 49.5%증가하였으며 NaCl 100 mg/L 용액에 대한 염제거율은 2.3% 감소되었는데, 이는 새 필터와 동등한 수준으로 회복이 되었다. 또한 전자현미경 분석을 이용하여 막 표면의 오염물의 제거를 육안으로 확인하였다. 이로써 전량 매립 또는 소각 되어지는 정수기용 폐 RO막 필터의 세정을 통하여 재사용이 가능할 것으로 판단된다.

초순수 제조 공정에서 역삼투 막의 저농도 유기물 제거 (Removal of low concentration organic matter by reverse osmosis membranes in ultrapure water production process)

  • 이홍주;김수한
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.391-396
    • /
    • 2014
  • Ultrapure water (UPW) is water containing nothing but water molecule ($H_2O$). The use of UPW is increasing in many industries such as the thermal and nuclear power plants, petrochemical plants, and semiconductor manufacturers. In order to produce UPW, several unit processes such as ion exchange, reverse osmosis (RO), ultraviolet (UV) oxidation should be efficiently arranged. In particular, RO process should remove not only ions but also low molecular weight (LMW) organic matters in UPW production system. But, the LMW organic matter removal data of RO membranes provided by manufacturers does not seem to be reasonable because they tested the removal in high concentration conditions like 1,000 ppm of isopropyl alcohol (IPA, MW=60.1). In this study, bench-scale experiments were carried out using 4-inches RO modules. IPA was used as a model LMW organic matter with low concentration conditions less than 1 ppm as total organic carbon (TOC). As a result, the IPA removal data by manufacturers turned out to be trustable because the effect of feed concentration on the IPA removal was negligble while the IPA removal efficiency became higher at higher permeate flux.

EGCG/바닐린 코팅 RO분리막의 표면 특성과 미생물막 억제능 (Surface characterization and evaluation of biofouling inhibition of reverse osmosis membranes coated with Epigallocatechin gallate(EGCG)/vanillin)

  • 정재현;김영진;남해욱;김윤중;이은수;이윤일;권지향
    • 상하수도학회지
    • /
    • 제28권6호
    • /
    • pp.713-723
    • /
    • 2014
  • Biofouling in brackish water reverse osmosis (RO) membranes still needs extensive research to understand cause and mechanism and to obtain methods for reduction of its impact on RO applications. Natural compounds with biofilm formation inhibitory properties are being investigated. Two compounds, vanillin and Epigallocatechin gallate (EGCG), were selected due to their great potential on biofilm formation inhibition. Vanillin shows inhibition on quorum sensing mechanisms of biofilm formation. EGCG has potential to inactivate microbial activity. The two compounds were incorporated in typical polyamide reverse osmosis membranes and evaluated on flux behaviours and biofilm formation potential. The surface properties of membrane coated with vanillin were changed tremendously compared to those with EGCG. As a result, the flux was reduced substantially. The biofilm formation seems hindered with EGCG coated membranes compared to the virgin membranes. More research is needed to optimize coating methods applicable to RO membranes and to enhance biofouling reduction.