• Title/Summary/Keyword: RNA synthesis

Search Result 811, Processing Time 0.028 seconds

Mode of Action of the Bacteriocin from Lactobacillus sp. GM7311 against Gram Positive Bacteria (Lactobacillus sp. GM7311이 생산하는 박테리오신의 Gram 양성균에 대한 작용형태)

  • KANG Ji Hee;LEE Myung Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.560-566
    • /
    • 1998
  • The bacteriocin produced by Lactobacillus sp. GM7311 showed strong inhibitory activity against the growth of three Gram positive bacteria, Listeria monocytogenes, Bacillus subtilis, and Staphylococcus aureus. When the bacteriocin was added to the culture at different phases, viable cells of all of the tested strains were decreased, although the most inhibited phase was different. Thereby, when the bacteriocin $(100\;Bu/m{\ell})$ was added to exponential and stationary phase of L. monocytogenes, the rapid reduction of viable cell counts occured. And, in the case of B. subtilis, the highest inhibitory effect occured at lag phase and mid-exponential phase by the addition of the bacteriocin under same condition as mentioned above. Also, we can observe the accelerated reduction of survivors counts for the all of the phase except stationary phase in the S. auresus. Transmission electron microscopic observation of L. monocrogenes and B. subtilis treated with bacteriocin revealed apparent Iysis of the cell wall and excretion of the cell contents, indicating bacteriolysis. Also, the amino acids and fatty acids compositions were different from controls. However, the Iysis of cell wall didn't occur in S. aureus, though the cytoplasmic materials were reduced. This result indicates that the bacteriocin inhibits the synthesis of nuclear materials such as DNA, RNA and proteins.

  • PDF

Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition

  • Soung, Nak-Kyun;Kim, Hye-Min;Asami, Yukihiro;Kim, Dong Hyun;Cho, Yangrae;Naik, Ravi;Jang, Yerin;Jang, Kusic;Han, Ho Jin;Ganipisetti, Srinivas Rao;Cha-Molstad, Hyunjoo;Hwang, Joonsung;Lee, Kyung Ho;Ko, Sung-Kyun;Jang, Jae-Hyuk;Ryoo, In-Ja;Kwon, Yong Tae;Lee, Kyung Sang;Osada, Hiroyuki;Lee, Kyeong;Kim, Bo Yeon;Ahn, Jong Seog
    • Experimental and Molecular Medicine
    • /
    • v.51 no.2
    • /
    • pp.1.1-1.14
    • /
    • 2019
  • Hypoxia-inducible factor-$1{\alpha}$ ($HIF-1{\alpha}$) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of $HIF-1{\alpha}$ in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of $HIF-1{\alpha}$ translation by binding to the C-terminal glycinerich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3'-untranslated region of $HIF-1{\alpha}$ mRNA. Moreover, MO-460 suppresses $HIF-1{\alpha}$ protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxiainduced tumor survival and thus offer an avenue for the development of novel anticancer therapies.

The enhancing effect of Acanthopanax sessiliflorus fruit extract on the antibacterial activity of porcine alveolar 3D4/31 macrophages via nuclear factor kappa B1 and lipid metabolism regulation

  • Hwang, Eunmi;Kim, Gye Won;Song, Ki Duk;Lee, Hak-Kyo;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1776-1788
    • /
    • 2019
  • Objective: The demands for measures to improve disease resistance and productivity of livestock are increasing, as most countries prohibit the addition of antibiotics to feed. This study therefore aimed to uncover functional feed additives to help enhance livestock immunity and disease resistance, using Acanthopanax sessiliflorus fruit extract (ASF). Methods: ASF was extracted with 70% EtOH, and total polyphenolic and catechin contents were measured by the Folin-Ciocalteu and vanillin assay, respectively. The 3D4/31 porcine macrophage cells ($M{\Phi}$) were activated by phorbol 12-myristate 13-acetate (PMA), and cell survival and growth rate were measured with or without ASF treatment. Flow-cytometric analysis determined the lysosomal activity, reactive oxygen species levels (ROS), and cell cycle distribution. Nuclear factor kappa B ($NF-{\kappa}B$) and superoxide dismutase (SOD) protein expression levels were quantified by western blotting and densitometry analysis. Quantitative polymerase chain reaction was applied to measure the lipid metabolism-related genes expression level. Lastly, the antibacterial activity of 3D4/31 $M{\Phi}$ cells was evaluated by the colony forming unit assay. Results: ASF upregulated the cell viability and growth rate of 3D4/31 $M{\Phi}$, with or without PMA activation. Moreover, lysosomal activity and intracellular ROS levels were increased after ASF exposure. In addition, the antioxidant enzyme SOD2 expression levels were proportionately increased with ROS levels. Both ASF and PMA treatment resulted in upregulation of $NF-{\kappa}B$ protein, tumor necrosis factor $(TNF){\alpha}$ mRNA expression levels, lipid synthesis, and fatty acid oxidation metabolism. Interestingly, co-treatment of ASF with PMA resulted in recovery of $NF-{\kappa}B$, $TNF{\alpha}$, and lipid metabolism levels. Finally, ASF pretreatment enhanced the in vitro bactericidal activity of 3D4/31 $M{\Phi}$ against Escherichia coli. Conclusion: This study provides a novel insight into the regulation of $NF-{\kappa}B$ activity and lipid metabolism in $M{\Phi}$, and we anticipate that ASF has the potential to be effective as a feed additive to enhance livestock immunity.

Inhibitory Effect of Rosa multiflora hip Extract on UVB-induced Skin Photoaging in Hs68 Fibroblasts (자외선으로 유도된 Hs68 섬유아세포의 노화 반응에 대한 영실추출물의 억제 효능)

  • Park, Ji-Eun;Kim, Hyoung Ja;Kim, Su-Nam;Kang, Seung Hyun;Kim, Youn Joon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • Acute and chronic ultraviolet (UV) irradiation triggers severe skin photoaging processes, which directly disrupt the normal three-dimensional integrity of skin. UV light stimulates the expression of matrix metalloproteinases (MMPs) which degrade constituents of extracellular matrix (ECM) proteins. These MMPs reduce collagen synthesis and decrease skin elasticity and integrity, resulting in wrinkle formation. In this study, we identified Rosa multiflora hip extract (RME) as an effective anti-photoaging ingredient. First, cell proliferation activity of RME was verified using Hs68 human dermal fibroblast cell line. RME downregulated MMPs expression through the inhibition of activator protein (AP)-1. In addition, type I and IV collagen expressions were increased with RME treatment and UVB-induced inflammatory responses were also reduced after RME treatment. In conclusion, R. multiflora hip extract may effectively improve UVB-induced skin aging and wrinkle formation which may provide as an anti-aging, anti-wrinkle, and anti-inflammation ingredient in cosmetic industry.

Inhibitory Effects of Tannic acid on Human Skin Fibroblast Elastase Activity (사람의 섬유아세포 엘라스타제 활성에 대한 탄닌산의 억제 효과)

  • Lee, Ju-Eun;Kim, So-Young;Kim, Su-Yeon;Oh, Mi-Hee;Yun, Hye-Young;Baek, Kwang-Jin;Kwon, Nyoun-Soo;Kim, Dong-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.217-223
    • /
    • 2008
  • Elastin is an important component of elastic fibers in the skin. Recently, many studies have reported that elastin is also involved In inhibiting or repairing wrinkle formation, although collagen is a major factor in the skin wrinkle formation. Elastase is a metalloproteinase which acts on degradation of elastin. It is known that elastase activity is increased by ultraviolet (UV) B radiation. Thus, Increased elastase activity could be the major reason for skin elasticity reduction and winkle formation. Tannic acid is a polyphenol found in various fruits and nuts. This molecule has a potent ability to eliminate reactive oxygen species and reactive nitrogen species. In the present study, we investigated whether tannic acid has effects on elastase activity and tropoelastin synthesis. Our results showed that tannic acid reduced elastase activity significantly in a dose-dependent manner. However, the expression of tropoelastin protein and mRNA was not significantly affected by tannic acid. From these results, we suggest that tannic acid may contribute to block tortuosity of elastic fibers by inhibiting elastase. Thus, tannic acid might be developed for a possible agent to Inhibit skin aging.

N-Acyl-Homoserine Lactone Quorum Sensing Switch from Acidogenesis to Solventogenesis during the Fermentation Process in Serratia marcescens MG1

  • Jin, Wensong;Lin, Hui;Gao, Huifang;Guo, Zewang;Li, Jiahuan;Xu, Quanming;Sun, Shujing;Hu, Kaihui;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.596-606
    • /
    • 2019
  • N-acyl-homoserine lactone quorum sensing (AHL-QS) has been shown to regulate many physiological behaviors in Serratia marcescens MG1. In the current study, the effects of AHL-QS on the biosynthesis of acid and neutral products by S. marcescens MG1 and its isogenic ${\Delta}swrI$ with or without supplementing exogenous N-hexanoyl-L-homoserine lactone ($C_6-HSL$) were systematically investigated. The results showed that swrI disruption resulted in rapid pH drops from 7.0 to 4.8, which could be restored to wild type by supplementing $C_6-HSL$. Furthermore, fermentation product analysis indicated that ${\Delta}swrI$ could lead to obvious accumulation for acidogenesis products such as lactic acid and succinic acid, especially excess acetic acid (2.27 g/l) produced at the early stage of fermentation, whereas solventogenesis products by ${\Delta}swrI$ appeared to noticeably decrease by an approximate 30% for acetoin during 32-48 h and by an approximate 20% for 2,3-butanediol during 24-40 h, when compared to those by wild type. Interestingly, the excess acetic acid produced could be removed in an AHL-QS-independent manner. Subsequently, quantitative real-time PCR was used to determine the mRNA expression levels of genes responsible for acidogenesis and solventogenesis and showed consistent results with those of product synthesis. Finally, by close examination of promoter regions of the analyzed genes, four putative luxI box-like motifs were found upstream of genes encoding acetyl-CoA synthase, lactate dehydrogenase, ${\alpha}$-acetolactate decarboxylase, and Lys-like regulator. The information from this study provides a novel insight into the roles played by AHL-QS in switching from acidogenesis to solventogenesis in S. marcescens MG1.

Extracts of Torilis Japonica Suppresses of Ultraviolet B-induced Matrix Metalloproteinase-1/-3 Expressions in Human Dermal Fibroblasts (사람 피부 섬유아세포에서 자외선으로 유도된 기질분해효소-1과 기질분해효소-3의 발현 유도에 대한 사상자 추출물의 억제효과)

  • Noh, Eun Mi;Song, Hyun Kyung;Kim, Jeong Mi;Lee, Guem San;Kwon, Kang Beom;Lee, Young Rae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.175-180
    • /
    • 2019
  • Torilis Japonica (TJ) has been used as an anti-allergy, antifungal, and antibacterial agent. Recent studies have reported that it also shows anti-cancer effects. It is report that TJ inhibits melanin synthesis in melanocyte in the skin. However, the effect and mechanism of TJ extract (TJE) on Ultraviolet (UV)B-induced photoaging are unknown. In this study, we investigated the preventive effects of TJE on matrix metalloproteinase (MMP)-1 and MMP-3 expressions and the underlying molecular mechanism in UVB-irradiated primary human dermal fibroblasts (HDFs). The effect of TJE on HDF cell viability was determined using the XTT assay and cell counting. MMP-1 and MMP-3 expressions levels were measured by western blotting and real-time PCR analysis. Activations of mitogen-activated protein kinase (MAPKinase), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$), and activator protein-1(AP-1) were measured by western blotting. Our results showed that TJE effectively reduced UVB-induced MMP-1 and MMP-3 protein and mRNA levels. Moreover, TJE significantly blocked the UVB-induced activation of MAPK (p38 and JNK) and transcription factors ($NF-{\kappa}B$ and AP-1), but not ERK. Taken together, our results suggest that the TJE inhibits UVB-induced MMP expressions in HDFs and its may be a potential agent for the prevention and treatment of skin photoaging.

A mixture of blackberry leaf and fruit extracts decreases fat deposition in HepG2 cells, modifying the gut microbiome

  • Wu, Xuangao;Jin, Bo Ram;Yang, Hye Jeong;Kim, Min Jung;Park, Sunmin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.229-237
    • /
    • 2019
  • More effective treatments are needed for non-alcoholic fatty liver disease (NAFLD). We hypothesized that water extracts of blackberry fruits (BF) and leaves (BL) and their combinations (BFL) reduce fat deposition in HepG2 cells and modulate shor-tchain fatty acids (SCFA) and fecal bacteria in vitro. HepG2 cells were treated with BF, BL, BFL1:2, and BFL1:3 for 1 h, and 0.5 mM palmitate was added to the cells. Moreover, low ($30{\mu}g/mL$) and high doses ($90{\mu}g/mL$) of BL and BF were applied to fecal bacteria in vitro, and SCFA was measured by GC. BL, BF, BFL1:2, and BFL1:3 reduced triglyceride deposition in the cells in a dose-dependent manner, and BFL1:2 and BFL1:3 had a stronger effect than BF. The content of malondialdehyde, an index of oxidative stress, was also reduced in BL, BF, and BFL1:2 with increasing superoxide dismutase and glutathione peroxidase activities. The mRNA expression of acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein-1c was reduced in BL, BF, BFL1:2, and BFL1:3 compared to the control, and BFL1:2 had the strongest effect. By contrast, the carnitine palmitolytransferase-1expression, a regulator of fatty acid oxidation, increased mostly in BFL1:2 and BFL1:3. Tumor necrosis factor-${\alpha}$ and interleukin-$1{\beta}$ expression was reduced in BL compared to that in BF and BFL1:2 in HepG2 cells. Interestingly, BL increased propionate production, and BF increased butyrate and propionate production and increased total SCFA content in fecal incubation. BF increased the contents of Bifidobacteriales and Lactobacillales and decreased those of Clostridiales, whereas BL elevated the contents of Bacteroidales and decreased those of Enterobacteriales. In conclusion, BFL1:2 and BFL1:3 may be potential therapeutic candidates for NAFLD.

Effect of sweet pumpkin powder on lipid metabolism in leptin-deficient mice (Leptin 유전자 결핍 동물모델에서 단호박분말 투여가 지방대사변화에 미치는 영향)

  • Inae Jeong;Taesang Son;Sang-myeong Jun;Hyun-Jung Chung;Ok-Kyung Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.5
    • /
    • pp.469-482
    • /
    • 2023
  • Purpose: Obesity has emerged as a critical global public health concern as it is associated with and increases susceptibility to various diseases. This condition is characterized by the excessive enlargement of adipose tissue, primarily stemming from an inequity between energy intake and expenditure. The purpose of this study was to investigate the potential of sweet pumpkin powder in mitigating obesity and metabolic disorders in leptin-deficient obese (ob/ob) mice and to compare the effects of raw sweet pumpkin powder (HNSP01) and heat-treated sweet pumpkin powder (HNSP02). Methods: Leptin-deficient obese mice were fed a diet containing 10% HNSP01 and another containing 10% HNSP02 for 6 weeks. Results: The supplementation of ob/ob mice with HNSP01 and HNSP02 resulted in decreased body weight gain, reduced adipose tissue weight, and a smaller size of lipid droplets in the adipose tissue and liver. Furthermore, the ob/ob-HNSP01 and ob/ob-HNSP02 supplemented groups exhibited lower levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, fasting blood glucose, and insulin, as well as a reduced atherogenic index in comparison with the control group. Molecular analysis also demonstrated that the intake of HNSP01 and HNSP02 resulted in a diminished activation of factors associated with fatty acid synthesis, including acetyl-CoA carboxylase and fatty acid synthase, while concurrently enhancing factors associated with lipolysis, including adipose triglyceride lipase and hormone-sensitive lipase, in the adipose tissue. Conclusion: Taken together, these findings collectively demonstrate the potential of sweet pumpkin powder as a functional food ingredient with therapeutic properties against obesity and its associated metabolic disorders, such as insulin resistance and dyslipidemia.

Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period

  • Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.522-535
    • /
    • 2024
  • Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.