DOI QR코드

DOI QR Code

Effect of sweet pumpkin powder on lipid metabolism in leptin-deficient mice

Leptin 유전자 결핍 동물모델에서 단호박분말 투여가 지방대사변화에 미치는 영향

  • Inae Jeong (Division of Food and Nutrition, Chonnam National University) ;
  • Taesang Son (Division of Food and Nutrition, Chonnam National University) ;
  • Sang-myeong Jun (Haenamgun Agricultural Technology Center) ;
  • Hyun-Jung Chung (Division of Food and Nutrition, Chonnam National University) ;
  • Ok-Kyung Kim (Division of Food and Nutrition, Chonnam National University)
  • 정인애 (전남대학교 식품영양과학부) ;
  • 손태상 (전남대학교 식품영양과학부) ;
  • 전상명 (해남군농업기술센터 농촌자원팀) ;
  • 정현정 (전남대학교 식품영양과학부) ;
  • 김옥경 (전남대학교 식품영양과학부)
  • Received : 2023.08.22
  • Accepted : 2023.09.26
  • Published : 2023.10.31

Abstract

Purpose: Obesity has emerged as a critical global public health concern as it is associated with and increases susceptibility to various diseases. This condition is characterized by the excessive enlargement of adipose tissue, primarily stemming from an inequity between energy intake and expenditure. The purpose of this study was to investigate the potential of sweet pumpkin powder in mitigating obesity and metabolic disorders in leptin-deficient obese (ob/ob) mice and to compare the effects of raw sweet pumpkin powder (HNSP01) and heat-treated sweet pumpkin powder (HNSP02). Methods: Leptin-deficient obese mice were fed a diet containing 10% HNSP01 and another containing 10% HNSP02 for 6 weeks. Results: The supplementation of ob/ob mice with HNSP01 and HNSP02 resulted in decreased body weight gain, reduced adipose tissue weight, and a smaller size of lipid droplets in the adipose tissue and liver. Furthermore, the ob/ob-HNSP01 and ob/ob-HNSP02 supplemented groups exhibited lower levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, fasting blood glucose, and insulin, as well as a reduced atherogenic index in comparison with the control group. Molecular analysis also demonstrated that the intake of HNSP01 and HNSP02 resulted in a diminished activation of factors associated with fatty acid synthesis, including acetyl-CoA carboxylase and fatty acid synthase, while concurrently enhancing factors associated with lipolysis, including adipose triglyceride lipase and hormone-sensitive lipase, in the adipose tissue. Conclusion: Taken together, these findings collectively demonstrate the potential of sweet pumpkin powder as a functional food ingredient with therapeutic properties against obesity and its associated metabolic disorders, such as insulin resistance and dyslipidemia.

본 연구에서는 ob/ob 마우스를 이용한 비만유발 동물모델에서 단호박분말 투여가 체지방 감소에 효과적인지 확인하기 위하여 6주간 식이를 통해 10% 단호박분말을 투여하였다. 그 결과, 단호박분말과 열처리 단호박분말을 섭취한 ob/ob 마우스에서 식이섭취량이 증가하였음에도 불구하고 체중과 지방조직 무게가 감소되었음을 확인하였으며 비만에 의한 인슐린 저항성과 이상지질혈증을 예방할 수 있음을 확인하였다. 체중 감소 효능의 기전을 확인하기 위해 지방합성과 지방분해에 관여하는 인자들의 mRNA와 단백질 발현을 관찰한 결과, 단호박 분말과 열처리 단호박분말을 섭취한 ob/ob 마우스에서 지방합성 인자들의 활성이 감소되었고, 지방분해에 관련하는 효소의 활성이 증가되었음을 확인하였다 (Fig. 6). 따라서 본 연구의 결과를 통해 단호박분말 섭취는 비만이 유도된 ob/ob 마우스에서 지방조직의 지방분해 증가와 지방합성 감소를 통해 체중 감소 효능 및 비만에 의한 대사질환 발생을 예방할 수 있다고 제안한다.

Keywords

Acknowledgement

This work was supported by grants from Food Research and development of local agricultural products (Haenamgun).

References

  1. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15(5): 288-298. https://doi.org/10.1038/s41574-019-0176-8
  2. Kopelman PG. Obesity as a medical problem. Nature 2000; 404(6778): 635-643. https://doi.org/10.1038/35007508
  3. Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics 2015; 33(7): 673-689. https://doi.org/10.1007/s40273-014-0243-x
  4. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm 2010; 2010: 289645.
  5. de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 2008; 54(6): 945-955. https://doi.org/10.1373/clinchem.2007.100156
  6. Lee JE, Schmidt H, Lai B, Ge K. Transcriptional and epigenomic regulation of adipogenesis. Mol Cell Biol 2019; 39(11): e00601-18. https://doi.org/10.1128/MCB.00601-18
  7. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab 2006; 4(4): 263-273. https://doi.org/10.1016/j.cmet.2006.07.001
  8. Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular mechanisms of adipogenesis: the anti-adipogenic role of AMP-activated protein kinase. Front Mol Biosci 2020; 7: 76.
  9. Che Y, Wang Q, Xiao R, Zhang J, Zhang Y, Gu W, et al. Kudinoside-D, a triterpenoid saponin derived from Ilex kudingcha suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes. Fitoterapia 2018; 125: 208-216. https://doi.org/10.1016/j.fitote.2017.11.018
  10. Townsend LK, Knuth CM, Wright DC. Cycling our way to fit fat. Physiol Rep 2017; 5(7): e13247.
  11. Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3(11): 1445-1465. https://doi.org/10.1038/s42255-021-00493-6
  12. Maqsood S, Adiamo O, Ahmad M, Mudgil P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem 2020; 308: 125522.
  13. Teng H, Mi Y, Cao H, Chen L. Enzymatic acylation of raspberry anthocyanin: evaluations on its stability and oxidative stress prevention. Food Chem 2022; 372: 130766.
  14. Lateh L, Kaewnopparat N, Yuenyongsawad S, Panichayupakaranant P. Enhancing the water-solubility of curcuminoids-rich extract using a ternary inclusion complex system: preparation, characterization, and anti-cancer activity. Food Chem 2022; 368: 130827.
  15. Kim JY, Jeon EB, Song MG, Park SY. Quality properties and antioxidant activities of Korean traditional rice-based wine, makgeolli added with sweet pumpkin. J Food Hyg Saf 2021; 36(3): 271-279. https://doi.org/10.13103/JFHS.2021.36.3.271
  16. Jegal JM. Quality characteristics and antioxidant activity of chestnut dasik added with pumpkin powder. Culin Sci Hosp Res 2022; 28(4): 1-10.
  17. Hwang ES, Park TY. Effect of adding pumpkin-sweet potato powder on cookie quality characteristics, antioxidant activity, and acrylamide reduction. J Korean Soc Food Sci Nutr 2022; 51(12): 1312-1320. https://doi.org/10.3746/jkfn.2022.51.12.1312
  18. Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protocols Pharmacol 2012; Chapter 5(5): 61.
  19. Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV, et al. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 2006; 55(12): 3335-3343. https://doi.org/10.2337/db06-0885
  20. Lindstrom P. The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci World J 2007; 7: 666-685. https://doi.org/10.1100/tsw.2007.117
  21. Maggio CA, Pi-Sunyer FX. Obesity and type 2 diabetes. Endocrinol Metab Clin North Am 2003; 32(4): 805-822. https://doi.org/10.1016/S0889-8529(03)00071-9
  22. Powell-Wiley TM, Poirier P, Burke LE, Despres JP, Gordon-Larsen P, Lavie CJ, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2021; 143(21): e984-e1010. https://doi.org/10.1161/CIR.0000000000000973
  23. Ziemke F, Mantzoros CS. Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr 2010; 91(1): 258S-261S. https://doi.org/10.3945/ajcn.2009.28449C
  24. Esfahani M, Movahedian A, Baranchi M, Goodarzi MT. Adiponectin: an adipokine with protective features against metabolic syndrome. Iran J Basic Med Sci 2015; 18(5): 430-442.
  25. Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr 2009; 4(1): 44-49. https://doi.org/10.1111/j.1559-4572.2008.00030.x
  26. Kostopoulos CG, Spiroglou SG, Varakis JN, Apostolakis E, Papadaki HH. Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis? Cardiovasc Pathol 2014; 23(3): 131-138. https://doi.org/10.1016/j.carpath.2014.02.003
  27. Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, et al. Obesity pathogenesis: an endocrine society scientific statement. Endocr Rev 2017; 38(4): 267-296. https://doi.org/10.1210/er.2017-00111
  28. Heo SJ, Kim JH, Kim JK, Moon KD. The comparison of food constituents in pumpkin and sweetpumpkin. J Korean Soc Food Cult 1998; 13(2): 91-96.
  29. Mounien L, Tourniaire F, Landrier JF. Anti-obesity effect of carotenoids: direct impact on adipose tissue and adipose tissue-driven indirect effects. Nutrients 2019; 11(7): 1562.
  30. Choi JH, Woo HE, Park JD, Sung JM. Effect of blanching conditions on qualities and nutritional characteristics of sweet pumpkin. J Korean Soc Food Cult 2021; 36(5): 512-521.