• Title/Summary/Keyword: RNA replication

Search Result 220, Processing Time 0.022 seconds

Effects on the Initiation of Simian Virus 40 DNA Replication by Antisense RNA

  • Jeong, Bo-Won;Kang, Hyen-Sam
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.538-545
    • /
    • 1995
  • When DNA replication of simian virus 40 (SV40) is initiated on the replication origin, the regions containing the initiation sites of DNA primase, which participates in the transient RNA primer synthesis for formation of Okazaki fragments in the lagging strand, were chosen as the target sites of antisense RNA for studies of the inhibition of SV40 DNA replication. Four recombinant transcription vectors, pUC-PrI, pUC-PrII, pGEM-PrBS, and pGEM-PrSN, coding antisense RNA, were constructed. Four antisense RNAs (named as I, II, BS, and SN) having the size of 18, 19,58, and 123 nts, respectively, were made from the transcription vectors by in vitro transcription. And then, antisense RNA in the concentration of 2${\mu}m$ were added to COS cells transfected with pATSV-W which is a recombinant plasmid containing the SV40 origin of replication. The inhibitory extent of DNA replication was measured by DpnI resistance and was confirmed by measurement of transient RNA primer synthesis. The result shows that six combinations of antisense RNA (I, II, BS, SN, I+SN, and BS+SN) lead to the inhibition of SV40 DNA replication by up to 85%.

  • PDF

Regulatory Viral and Cellular Elements Required for Potato Virus X Replication

  • Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.115-122
    • /
    • 2001
  • Potato virus X (PVX) is a flexuous rod-shaped virus containing a single plus-strand RNA. Viral RNA synthesis is precisely regulated by regulatory viral sequences and by viral and/or host proteins. RNA sequence element as well as stable RNA stem-loop structure in the 5' end of the genome affect accumulation of genomic RNA and subgenomic RNA (sgRNA). The putative sgRNA promoter regions upstream of the PVX triple gene block (TB) and coat protein (CP) gene were critical for both TB and CP sgRNA accumulation. Mutations that disrupted complementarity between a region at the 5' end of the genomic RNA and the sequences located upstream of each sgRNA initiation site is important for PVX RNA accumulation. Compensatory mutations that restore complementarity restored sgRNA accumulation levels. However, the extent of reductions in RNA levels did not directly correlate with the degree of complementarity, suggesting that the sequences of these elements are also important. Gel-retardation assays showed that the 5' end of the positive-strand RNA formed an RNA-protein complex with cellular proteins, suggesting possible involvement of cellular proteins for PVX replication. Future studies on cellular protein binding to the PVX RNA and their role in virus replication will bring a fresh understanding of PVX RNA replication.

  • PDF

RNA-RNA Interactions between RNA Elements at the 5' end and at the Upstream of sgRNA of RNA Genome are Required for Potato virus X RNA Replication

  • Park, Mi-Ri;Park, Sang-Ho;Cho, Sang-Yun;Hemenway, Cynthia L.;Choi, Hong-Soo;Sohn, Seong-Han;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • RNA-RNA interactions and the dynamic RNA conformations are important regulators in virus replication in several RNA virus systems and may also involved in the regulation of many important virus life cycle phases, including translation, replication, assembly, and switches in these important stages. The 5' non-translated region of Potato virus X(PVX) contains multiple cis-acting elements that facilitate various viral processes. It has previously been proposed that RNA-RNA interactions between various RNA elements present in PVX RNA genome are required for PVX RNA accumulation(Hu et al., 2007; Kim and Hemenway, 1999). This model was based on the potential base-pairing between conserved sequence elements at the upstream of subgenomic RNAs(sgRNAs) and at the 5' and 3' end of RNA genome. We now provide more evidence that RNA-RNA base-pairing between elements present at the 5' end and upstream of each sgRNA is required for efficient replication of genomic and subgenomic plus-strand RNA accumulation. Site-directed mutations introduced at the 5' end of plus-strand RNA replication defective mutant(${\Delta}12$) increasing base-pairing possibility with conserved sequence elements located upstream of each sgRNAs restored genomic and subgenomic plus-strand RNA accumulation and caused symptom development in inoculated Nicotiana benthamiana plants. Serial passage of a deletion mutant(${\Delta}8$) caused more severe symptoms and restored wild type sequences and thus retained possible RNA-RNA base-pairing. Altogether, these results indicate that the RNA element located at the 5' end of PVX genome involved in RNA-RNA interactions and play a key role in high-level accumulation of plus-strand RNA in vivo.

Inhibition of Hepatitis B Virus Replication by in vitro Synthesized RNA

  • Yang, Yeon-Ju;Heo, Young-Shin;Kim, Jeong-Ki;Kim, Sang-Yong;Ahn, Jeong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1385-1389
    • /
    • 2005
  • Human hepatitis B virus (HBV) is a pathogen related to the development of liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, the efficient methods to suppress HBV replication have not been developed yet. Therefore, we have used RNA interference (RNAi) as a potential tool for the suppression of HBV replication. Here, we designed a 21 nt small intefering dsRNA (siRNA) against hepatitis B virus X (HBx) RNA with 3' overhanging ends derived from T7 promoter. It has been reported that HBV X protein plays an important role in HBV gene expression and viral replication. The suppression of HBx gene expression by the 21 nt siRNA was investigated by Northern blot analysis and chloramphenicol acetyl transferase (CAT) assay. The level of HBx mRNA was decreased by siRNA in a dose-dependent manner. We also found that the 21 nt siRNA inhibited the HBV replication in hepatocellular carcinoma cell.

Vinyl-Stilbene Inhibits Human Norovirus RNA Replication by Activating Heat-Shock Factor-1

  • Lee, Ahrim;Sung, Jieun;Harmalkar, Dipesh S.;Kang, Hyeseul;Lee, Hwayoung;Lee, Kyeong;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.64-71
    • /
    • 2022
  • Norovirus (NV) is the most common cause of viral gastroenteritis, with the potential to develop into a fatal disease in those who are immuno-compromised, and effective vaccines and treatments are still non-existent. In this study, we aimed to elucidate the molecular mechanism of the previously identified NV replication inhibitor utilizing a vinyl-stilbene backbone, AC-1858. First, we confirmed the inhibition of the NV RNA replication by a structural analog of AC-1858, AC-2288 with its exclusive cytoplasmic sub-cellular localization. We further validated the induction of one specific host factor, the phosphorylated form of heat shock factor (HSF)-1, and its increased nuclear localization by AC-1858 treatment. Finally, we verified the positive and negative impact of the siRNA-mediated downregulation and lentivirus-mediated overexpression of HSF-1 on NV RNA replication. In conclusion, these data suggest the restrictive role of the host factor HSF-1 in overall viral RNA genome replication during the NV life cycle.

Flock House Virus RNA1 with a Long Heterologous Sequence at the 3'-end Can Replicate in Mammalian Cells and Mediate Reporter Gene Expression

  • Kim, Doyeong;Cho, Tae-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1790-1798
    • /
    • 2019
  • Flock House virus (FHV), an insect RNA virus, has a bipartite genome. FHV RNA1 can be packaged in turnip yellow mosaic virus (TYMV) as long as the FHV RNA has a TYMV sequence at the 3'-end. The encapsidated FHV RNA1 has four additional nucleotides at the 5'-end. We investigated whether the recombinant FHV RNA1 could replicate in mammalian cells. To address this issue, we prepared in vitro transcribed FHV RNAs that mimicked the recombinant FHV RNA1, and introduced them into baby hamster kidney (BHK) cells. The result showed that the recombinant FHV RNA1 was capable of replication. An eGFP gene inserted into the frame with B2 gene of the FHV RNA1 was also successfully expressed. We also observed that eGFP expression at the protein level was strong at 28℃ but weak at 30℃. Sequence analysis showed that the 3'-ends of the RNA1 and RNA3 replication products were identical to those of the authentic FHV RNAs. This indicates that FHV replicase correctly recognized an internally-located replication signal. In contrast, the 5'-ends of recombinant FHV RNA1 frequently had deletions, indicating random initiation of (+)-strand synthesis.

The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses

  • John, Bwalya;Kook-Hyung, Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.28-38
    • /
    • 2023
  • Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.

The Importance of Host Factors for the Replication of Plant RNA Viruses (식물 바이러스 증식에 관여하는 기주 요인의 중요성)

  • Park Mi-Ri;Kim Kook-Hyung
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • All viruses have few genes relative to their hosts. Viruses, thus, utilize many host factors for efficient viral replication in host cell. Virus-host interactions are crucial determinations of host range, replication, and pathology. Host factors participate in most steps of positive-strand RNA virus infection, including entry, viral gene expression, virion assembly, and release. Recent data show that host factors play important roles in assembling the viral RNA replication complex, selecting and recruiting viral RNA replication templates, activating the viral complex for RNA synthesis, and the other steps. These virus-host interactions may contribute to the host specificity and/or pathology. Positive-strand RNA viruses encompass over two-thirds of all virus genera and include numerous pathogens. This review focuses on the importance of host factors involved in positive strand plant RNA virus genome replication.

Role of 5'-UTR hairpins of the Turnip yellow mosaic virus RNA in replication and systemic movement

  • Shin, Hyun-Il;Cho, Nam-Jeong;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.778-783
    • /
    • 2008
  • Turnip yellow mosaic virus (TYMV) RNA has two hairpins in its 5' untranslated region (5'-UTR). To investigate the role of the hairpins in replication of TYMV, mutants lacking one or both of the two hairpins were constructed. The TYMV constructs were introduced into Chinese cabbage by an Agrobacterium-mediated T-DNA transfer method, called agroinfiltration. Analysis of total RNA from agroinfiltrated leaves showed that replication of the mutant TYMV RNA lacking both hairpins was about 1/100 of wild type. This mutant was also impaired in systemic spread. Deletion analysis of each hairpin revealed that both hairpins were needed for maximal replication. The deletion analysis along with sequence modification of the hairpin structure indicates that the second hairpin plays a role in efficient long-distance systemic movement of TYMV.

Replication and encapsidation of recombinant Turnip yellow mosaic virus RNA

  • Shin, Hyun-Il;Kim, In-Cheol;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.739-744
    • /
    • 2008
  • Turnip yellow mosaic virus (TYMV) is a positive strand RNA virus that infects mainly Cruciferae plants. In this study, the TYMV genome was modified by inserting an extra subgenomic RNA promoter and a multiple cloning site. This modified TYMV was introduced into Nicotiana benthamiana using a Agrobacterium-mediated T-DNA transfer system (agroinfiltration). When a gene encoding $\beta$-glucuronidase or green fluorescent protein was expressed using this modified TYMV as a vector, replication of the recombinant viruses, especially the virus containing $\beta$-glucuronidase gene, was severely inhibited. The suppression of replication was reduced by co-expression of viral silencing suppressor genes, such as tombusviral p19, closteroviral p21 or potyviral HC-Pro. As expected, two subgenomic RNAs were produced from the recombinant TYMV, where the larger one contained the foreign gene. An RNase protection assay revealed that the recombinant subgenomic RNA was encapsidated as efficiently as the genuine subgenomic RNA.