DOI QR코드

DOI QR Code

The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses

  • John, Bwalya (Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kook-Hyung, Kim (Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2022.10.04
  • Accepted : 2022.12.22
  • Published : 2023.02.01

Abstract

Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.

Keywords

Acknowledgement

This research was supported by grants from the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (120080-05-1-HD030), funded by the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea. JB was supported by a research fellowship from the Brain Korea 21 Four Program.

References

  1. Abbink, T. E. M., Peart, J. R., Mos, T. N. M., Baulcombe, D. C., Bol, J. F. and Linthorst, H. J. M. 2002. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology 295:307-319.  https://doi.org/10.1006/viro.2002.1332
  2. Ahlquist, P. 2002. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296:1270-1273.  https://doi.org/10.1126/science.1069132
  3. Ahlquist, P., Noueiry, A. O., Lee, W.-M., Kushner, D. B. and Dye, B. T. 2003. Host factors in positive-strand RNA virus genome replication. J. Virol. 77:8181-8186.  https://doi.org/10.1128/JVI.77.15.8181-8186.2003
  4. Alazem, M., He, M.-H., Moffett, P. and Lin, N.-S. 2017. Abscisic acid induces resistance against bamboo mosaic virus through Argonaute 2 and 3. Plant Physiol. 174:339-355.  https://doi.org/10.1104/pp.16.00015
  5. Alazem, M., Kim, K.-H. and Lin, N.-S. 2019. Effects of abscisic acid and salicylic acid on gene expression in the antiviral RNA silencing pathway in Arabidopsis. Int. J. Mol. Sci. 20:2538. 
  6. Alazem, M. and Lin, N.-S. 2015. Roles of plant hormones in the regulation of host-virus interactions. Mol. Plant Pathol.16:529-540.  https://doi.org/10.1111/mpp.12204
  7. Alazem, M., Tseng, K.-C., Chang, W.-C., Seo, J.-K. and Kim, K.- H. 2018. Elements involved in the Rsv3-mediated extreme resistance against an avirulent strain of soybean mosaic virus. Viruses 10:581. 
  8. Allan, A. C., Lapidot, M., Culver, J. N. and Fluhr, R. 2001. An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol. 126:97-108.  https://doi.org/10.1104/pp.126.1.97
  9. Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141:391-396.  https://doi.org/10.1104/pp.106.082040
  10. Balasubramaniam, M., Kim, B.-S., Hutchens-Williams, H. M. and Loesch-Fries, L. S. 2014. The photosystem II oxygenevolving complex protein PsbP interacts with the coat protein of alfalfa mosaic virus and inhibits virus replication. Mol. Plant-Microbe Interact. 27:1107-1118.  https://doi.org/10.1094/MPMI-02-14-0035-R
  11. Bhat, S., Folimonova, S. Y., Cole, A. B., Ballard, K. D., Lei, Z., Watson, B. S., Sumner, L. W. and Nelson R. S. 2013. Influence of host chloroplast proteins on tobacco mosaic virus accumulation and intercellular movement. Plant Physiol. 161:134-147.  https://doi.org/10.1104/pp.112.207860
  12. Bhattacharyya, D. and Chakraborty, S. 2018. Chloroplast: the Trojan horse in plant-virus interaction. Mol. Plant Pathol. 19:504-518.  https://doi.org/10.1111/mpp.12533
  13. Boatwright, J. L. and Pajerowska-Mukhtar, K. 2013. Salicylic acid: an old hormone up to new tricks. Mol. Plant Pathol. 14:623-634.  https://doi.org/10.1111/mpp.12035
  14. Bobik, K. and Burch-Smith, T. M. 2015. Chloroplast signaling within, between and beyond cells. Front. Plant Sci. 6:781. 
  15. Budziszewska, M. and Obrepalska-Steplowska, A. 2018. The role of the chloroplast in the replication of positive-sense singlestranded plant RNA viruses. Front. Plant Sci. 9:1776. 
  16. Burgyan, J., Rubino, L. and Russo, M. 1996. The 5'-terminal region of a tombusvirus genome determines the origin of multivesicular bodies. J. Gen. Virol. 77:1967-1974.  https://doi.org/10.1099/0022-1317-77-8-1967
  17. Bwalya, J., Alazem, M. and Kim, K.-H. 2022. Photosynthesisrelated genes induce resistance against soybean mosaic virus: evidence for involvement of the RNA silencing pathway. Mol. Plant Pathol. 23:543-560.  https://doi.org/10.1111/mpp.13177
  18. Calil, I. P. and Fontes, E. P. B. 2017. Plant immunity against viruses: antiviral immune receptors in focus. Ann. Bot. 119:711-723.  https://doi.org/10.1093/aob/mcw200
  19. Caplan, J. L., Mamillapalli, P., Burch-Smith, T. M., Czymmek, K. and Dinesh-Kumar, S. P. 2008. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449-462.  https://doi.org/10.1016/j.cell.2007.12.031
  20. Cheng, D.-J., Xu, X.-J., Yan, Z.-Y., Tettey, C. K., Fang, L., Yang, G.-L., Geng. C., Tian Y.-P. and Li, X.-D. 2021. The chloroplast ribosomal protein large subunit 1 interacts with viral polymerase and promotes virus infection. Plant Physiol. 187:174-186.  https://doi.org/10.1093/plphys/kiab249
  21. Cheng, S.-F., Huang, Y.-P., Chen, L.-H., Hsu, Y.-H. and Tsai, C.-H. 2013. Chloroplast phosphoglycerate kinase is involved in the targeting of bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiol. 163:1598-1608.  https://doi.org/10.1104/pp.113.229666
  22. Cheng, Y.-Q., Liu, Z.-M., Xu, J., Zhou, T., Wang, M., Chen, Y.-T., Li, H.-F. and Fan, Z.-F. 2008. HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. J. Gen. Virol. 89:2046-2054.  https://doi.org/10.1099/vir.0.2008/001271-0
  23. Cowan, G. H., Roberts, A. G., Chapman, S. N., Ziegler, A., Savenkov, E. I. and Torrance, L. 2012. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids. Front. Plant Sci. 3:290. 
  24. De Graaff, M., Coscoy, L. and Jaspars, E. M. J. 1993. Localization and biochemical characterization of alfalfa mosaic virus replication complexes. Virology 194:878-881.  https://doi.org/10.1006/viro.1993.1335
  25. den Boon, J. A., Diaz, A. and Ahlquist, P. 2010. Cytoplasmic viral replication complexes. Cell Host Microbe 8:77-85.  https://doi.org/10.1016/j.chom.2010.06.010
  26. Diez, J., Ishikawa, M., Kaido, M. and Ahlquist, P. 2000. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl. Acad. Sci. U. S. A. 97:3913-3918.  https://doi.org/10.1073/pnas.080072997
  27. Dreher, T. W. 1999. Functions of the 3'-untranslated regions of positive strand RNA viral genomes. Annu. Rev. Phytopathol. 37:151-174.  https://doi.org/10.1146/annurev.phyto.37.1.151
  28. Dreher, T. W. and Miller, W. A. 2006. Translational control in positive strand RNA plant viruses. Virology 344:185-197.  https://doi.org/10.1016/j.virol.2005.09.031
  29. Gadh, I. P. S. and Hari, V. 1986. Association of tobacco etch virus related RNA with chloroplasts in extracts of infected plants. Virology 150:304-307.  https://doi.org/10.1016/0042-6822(86)90292-8
  30. Ganusova, E. E., Rice, J. H., Carlew, T. S., Patel, A., Perrodin-Njoku, E., Hewezi, T. and Burch-Smith, T. M. 2017. Altered expression of a chloroplast protein affects the outcome of virus and nematode infection. Mol. Plant-Microbe Interact. 30:478-488.  https://doi.org/10.1094/MPMI-02-17-0031-R
  31. Garcia-Marcos, A., Pacheco, R., Manzano, A., Aguilar, E. and Tenllado, F. 2013. Oxylipin biosynthesis genes positively regulate programmed cell death during compatible infections with the synergistic pair potato virus X-potato virus Y and tomato spotted wilt virus. Virol. J. 87:5769-5783.  https://doi.org/10.1128/JVI.03573-12
  32. Hafren, A., Hofius, D., Ronnholm, G., Sonnewald, U. and Makinen, K. 2010. HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. Plant Cell 22:523-535.  https://doi.org/10.1105/tpc.109.072413
  33. Hakmaoui, A., Perez-Bueno, M. L., Garcia-Fontana, B., Camejo, D., Jimenez, A., Sevilla, F. and Baron, M. 2012. Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of pepper mild mottle virus. J. Exp. Bot. 63:5487-5496.  https://doi.org/10.1093/jxb/ers212
  34. Hatta, T., Bullivant, S. and Matthews, R. E. 1973. Fine structure of vesicles induced in chloroplasts of Chinese cabbage leaves by infection with turnip yellow mosaic virus. J. Gen. Virol. 20:37-50.  https://doi.org/10.1099/0022-1317-20-1-37
  35. Hilaire, J., Tindale, S., Jones, G., Pingarron-Cardenas, G., Bacnik, K., Ojo, M. and Frewer, L. J. 2022. Risk perception associated with an emerging agri-food risk in Europe: plant viruses in agriculture. Agric. Food Secur. 11:21. 
  36. Hyodo, K. and Okuno, T. 2016. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr. Opin. Virol. 17:11-18.  https://doi.org/10.1016/j.coviro.2015.11.004
  37. Jakubiec, A., Notaise, J., Tournier, V., Hericourt, F., Block, M. A., Drugeon, G., van Aelst, L. and Jupin, I. 2004. Assembly of turnip yellow mosaic virus replication complexes: interaction between the proteinase and polymerase domains of the replication proteins. J. Virol. 78:7945-7957.  https://doi.org/10.1128/JVI.78.15.7945-7957.2004
  38. Jang, C., Seo, E.-Y., Nam, J., Bae, H., Gim, Y. G., Kim, H. G., Cho, I. S., Lee, Z.-W., Bauchan, G. R., Hammond, J. and Lim, H.-S. 2013. Insights into alternanthera mosaic virus TGB3 functions: interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 over-expression. Front. Plant Sci. 4:5. 
  39. Jimenez, I., Lopez, L., Alamillo, J. M., Valli, A. and Garcia, J. A. 2006. Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol. Plant-Microbe Interact. 19:350-358.  https://doi.org/10.1094/MPMI-19-0350
  40. Jin, X., Jiang, Z., Zhang, K., Wang, P., Cao, X., Yue, N., Wang, X., Zhang, X., Li, Y., Li, D. Kang, B.-H. and Zhang, Y. 2017. Three-dimensional analysis of chloroplast structures associated with virus infection. Plant Physiol. 176:282-294.  https://doi.org/10.1104/pp.17.00871
  41. Jin, Y., Ma, D., Dong, J., Li, D., Deng, C., Jin, J. and Wang, T. 2007. The HC-pro protein of potato virus Y interacts with NtMinD of tobacco. Mol. Plant-Microbe Interact. 20:1505-1511.  https://doi.org/10.1094/MPMI-20-12-1505
  42. Jones, R. A. C. and Naidu, R. A. 2019. Global dimensions of plant virus diseases: current status and future perspectives. Annu. Rev. Virol. 6:387-409.  https://doi.org/10.1146/annurev-virology-092818-015606
  43. Jungfleisch, J., Chowdhury, A., Alves-Rodrigues, I., Tharun, S. and Diez, J. 2015. The Lsm1-7-Pat1 complex promotes viral RNA translation and replication by differential mechanisms. RNA 21:1469-1479.  https://doi.org/10.1261/rna.052209.115
  44. Kaido, M., Abe, K., Mine, A., Hyodo, K., Taniguchi, T., Taniguchi, H., Mise, K. and Okuno, T. 2014. GAPDH: a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLoS Pathog. 10:e1004505. 
  45. Kitajima, E. W. and Costa, A. S. 1973. Aggregates of chloroplasts in local lesions induced in Chenopodium quinoa Wild. by turnip mosaic virus. J. Gen. Virol. 20:413-416.  https://doi.org/10.1099/0022-1317-20-3-413
  46. Koonin, E. V. and Dolja, V. V. 1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28:375-430.  https://doi.org/10.3109/10409239309078440
  47. Kozuleva, M., Klenina, I., Proskuryakov, I., Kirilyuk, I. and Ivanov, B. 2011. Production of superoxide in chloroplast thylakoid membranes: ESR study with cyclic hydroxylamines of different lipophilicity. FEBS Lett. 585:1067-1071.  https://doi.org/10.1016/j.febslet.2011.03.004
  48. Lehto, K., Tikkanen, M., Hiriart, J.-B., Paakkarinen, V. and Aro, E.-M. 2003. Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Mol. Plant-Microbe Interact. 16:1135-1144.  https://doi.org/10.1094/MPMI.2003.16.12.1135
  49. Li, Y., Cui, H., Cui, X. and Wang, A. 2016. The altered photosynthetic machinery during compatible virus infection. Curr. Opin. Virol. 17:19-24.  https://doi.org/10.1016/j.coviro.2015.11.002
  50. Li, Z., Pogany, J., Panavas, T., Xu, K., Esposito, A. M., Kinzy, T. G. and Nagy P. D. 2009. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology 385:245-260.  https://doi.org/10.1016/j.virol.2008.11.041
  51. Lin, L., Luo, Z., Yan, F., Lu, Y., Zheng, H. and Chen, J. 2011. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes 43:90-92.  https://doi.org/10.1007/s11262-011-0596-6
  52. Martin, M. T., Cervera, M. T., Garcia, J. A. and Bonay, P. 1995. Properties of the active plum pox potyvirus RNA polymerase complex in defined glycerol gradient fractions. Virus Res. 37:127-137.  https://doi.org/10.1016/0168-1702(95)00028-O
  53. Mayhew, D. E. and Ford, R. E. 1974. Detection of ribonucleaseresistant RNA in chloroplasts of corn leaf tissue infected with maize dwarf mosaic virus. Virology 57:503-509.  https://doi.org/10.1016/0042-6822(74)90189-5
  54. Medina-Puche, L., Tan, H., Dogra, V., Wu, M., Rosas-Diaz, T., Wang, L., Ding, X., Zhang, D., Fu, X., Kim, C. and LozanoDuran, R. 2020. A defense pathway linking plasma membrane and chloroplasts and co-opted by pathogens. Cell 182:1109-1124.  https://doi.org/10.1016/j.cell.2020.07.020
  55. Moriceau, L., Jomat, L., Bressanelli, S., Alcaide-Loridan, C. and Jupin, I. 2017. Identification and molecular characterization of the chloroplast targeting domain of turnip yellow mosaic virus replication proteins. Front. Plant Sci. 8:2138. 
  56. Muhlenbock, P., Szechynska-Hebda, M., Plaszczyca, M., Baudo, M., Mateo, A., Mullineaux, P. M., Parker, J. E., Karpinska, B. and Karpinski, S. 2008. Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell 20:2339-2356.  https://doi.org/10.1105/tpc.108.059618
  57. Nagy, P. D., Barajas, D. and Pogany, J. 2012. Host factors with regulatory roles in tombusvirus replication. Curr. Opin. Virol. 2:691-698.  https://doi.org/10.1016/j.coviro.2012.10.004
  58. Nagy, P. D. and Pogany, J. 2006. Yeast as a model host to dissect functions of viral and host factors in tombusvirus replication. Virology 344:211-220.  https://doi.org/10.1016/j.virol.2005.09.017
  59. Nagy, P. D. and Pogany, J. 2008a. Host factors promoting viral RNA replication. Viral Genome Replication 1:267-295.  https://doi.org/10.1007/b135974_14
  60. Nagy, P. D. and Pogany, J. 2008b. Multiple roles of viral replication proteins in plant RNA virus replication. Methods Mol. Biol. 451:55-68.  https://doi.org/10.1007/978-1-59745-102-4_4
  61. Nambara, E. and Marion-Poll, A. 2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56:165-185.  https://doi.org/10.1146/annurev.arplant.56.032604.144046
  62. Nishikiori, M., Dohi, K., Mori, M., Meshi, T., Naito, S. and Ishikawa, M. 2006. Membrane-bound tomato mosaic virus replication proteins participate in RNA synthesis and are associated with host proteins in a pattern distinct from those that are not membrane bound. J. Virol. 80:8459-8468.  https://doi.org/10.1128/JVI.00545-06
  63. Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., Furuichi, T., Takebayashi, K., Sugimoto, T., Sano, S., Suwastika, I. N., Fukusaki, E., Yoshioka, H., Nakahira, Y. and Shiina, T. 2012. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat. Commun. 3:926. 
  64. Noueiry, A. O. and Ahlquist, P. 2003. Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. Annu. Rev. Phytopathol. 41:77-98.  https://doi.org/10.1146/annurev.phyto.41.052002.095717
  65. Padmanabhan, M. S. and Dinesh-Kumar, S. P. 2010. All hands on deck: the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Mol. Plant-Microbe Interact. 23:1368-1380.  https://doi.org/10.1094/MPMI-05-10-0113
  66. Panavas, T., Hawkins, C. M., Panaviene, Z. and Nagy, P. D. 2005. The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of cucumber necrosis tombusvirus. Virology 338:81-95.  https://doi.org/10.1016/j.virol.2005.04.025
  67. Prod'homme, D., Jakubiec, A., Tournier, V., Drugeon, G. and Jupin, I. 2003. Targeting of the turnip yellow mosaic virus 66K replication protein to the chloroplast envelope is mediated by the 140K protein. J. Virol. 77:9124-9135.  https://doi.org/10.1128/JVI.77.17.9124-9135.2003
  68. Prod'homme, D., Le Panse, S., Drugeon, G. and Jupin, I. 2001. Detection and subcellular localization of the turnip yellow mosaic virus 66K replication protein in infected cells. Virology 281:88-101.  https://doi.org/10.1006/viro.2000.0769
  69. Qiao, Y., Li, H. F., Wong, S. M. and Fan, Z. F. 2009. Plastocyanin transit peptide interacts with potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. Mol. Plant-Microbe Interact. 22:1523-1534.  https://doi.org/10.1094/MPMI-22-12-1523
  70. Rubio, L., Galipienso, L. and Ferriol, I. 2020. Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Front. Plant Sci. 11:1092. 
  71. Rubino, L. and Russo, M. 1998. Membrane targeting sequences in tombusvirus infections. Virology 252:431-437.  https://doi.org/10.1006/viro.1998.9490
  72. Salesse-Smith, C. E., Sharwood, R. E., Busch, F. A., Kromdijk, J., Bardal, V. and Stern, D. B. 2018. Overexpression of Rubisco subunits with RAF1 increases Rubisco content in maize. Nat. Plants 4:802-810.  https://doi.org/10.1038/s41477-018-0252-4
  73. Salonen, A., Ahola, T. and Kaariainen, L. 2005. Viral RNA replication in association with cellular membranes. Curr. Top. Microbiol. Immunol. 285:139-173. 
  74. Sanfacon, H. 2005. Replication of positive-strand RNA viruses in plants: contact points between plant and virus components. Can. J. Bot. 83:1529-1549.  https://doi.org/10.1139/b05-121
  75. Serrano, I., Audran, C. and Rivas, S. 2016. Chloroplasts at work during plant innate immunity. J. Exp. Bot. 67:3845-3854.  https://doi.org/10.1093/jxb/erw088
  76. Seyfferth, C. and Tsuda, K. 2014. Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front. Plant Sci. 5:697. 
  77. Shi, Y., Chen, J., Hong, X., Chen, J. and Adams, M. J. 2007. A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Mol Plant Pathol. 8:785-790.  https://doi.org/10.1111/j.1364-3703.2007.00426.x
  78. Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J.-I., Sueda, K., Burgyan, J. and Masuta, C. 2011. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog. 7:e1002021. 
  79. Simon, A. E. and Miller, W. A. 2013. 3' cap-independent translation enhancers of plant viruses. Annu. Rev. Microbiol. 67:21-42.  https://doi.org/10.1146/annurev-micro-092412-155609
  80. Stael, S., Kmiecik, P., Willems, P., Van der Kelen, K., Coll, N. S., Teige, M. and Van Breusegem, F. 2015. Plant innate immunity: sunny side up? Trends Plant Sci. 20:3-11.  https://doi.org/10.1016/j.tplants.2014.10.002
  81. Thivierge, K., Cotton, S., Dufresne, P. J., Mathieu, I., Beauchemin, C., Ide, C., Fortin, M. G. and Laliberte, J.-F. 2008. Eukaryotic elongation factor 1A interacts with turnip mosaic virus RNA-dependent RNA polymerase and VPg-Pro in virusinduced vesicles. Virology 377:216-225.  https://doi.org/10.1016/j.virol.2008.04.015
  82. Torres, M. A., Jones, J. D. G. and Dangl, J. L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141:373-378.  https://doi.org/10.1104/pp.106.079467
  83. Turner, J. G., Ellis, C. and Devoto, A. 2002. The jasmonate signal pathway. Plant Cell 14(Suppl):S153-S164.  https://doi.org/10.1105/tpc.000679
  84. Wang, B., Li, Z., Ran, Q., Li, P., Peng, Z. and Zhang, J. 2018. ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Front. Plant Sci. 9:709. 
  85. Wasternack, C. and Hause, B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development: an update to the 2007 review in Annals of Botany. Ann. Bot. 111:1021-1058.  https://doi.org/10.1093/aob/mct067
  86. Wei, T., Zhang, C., Hou, X., Sanfacon, H. and Wang, A. 2013. The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of vrus-induced vesicles with chloroplasts. PLoS Pathog. 9:e1003378. 
  87. Whitfield, A. E., Falk, B. W. and Rotenberg, D. 2015. Insect vector-mediated transmission of plant viruses. Virology 479- 480:278-289.  https://doi.org/10.1016/j.virol.2015.03.026
  88. Widyasari, K., Alazem, M. and Kim, K.-H. 2020. Soybean resistance to soybean mosaic virus. Plants 9:219. 
  89. Widyasari, K., Tran, P.-T., Shin, J., Son, H. and Kim, K.-H. 2022. Overexpression of purple acid phosphatase GmPAP2.1 confers resistance to soybean mosaic virus in a susceptible soybean cultivar. J. Exp. Bot. 73:1623-1642.  https://doi.org/10.1093/jxb/erab496
  90. Wildermuth, M. C., Dewdney, J., Wu, G. and Ausubel, F. M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562-565.  https://doi.org/10.1038/35107108
  91. Wu, J., Yang, R., Yang, Z., Yao, S., Zhao, S., Wang. Y. Li, P., Song, X., Jin, L., Zhou, T., Lan, Y., Xie, L., Zhou, X., Chu, C., Qi, Y., Cao, X. and Li, Y. 2017. ROS accumulation and antiviral defense control by microRNA528 in rice. Nat. Plants 3:16203. 
  92. Xu, K. and Nagy, P. D. 2014. Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication. Curr. Opin. Virol. 9:119-126.  https://doi.org/10.1016/j.coviro.2014.09.015
  93. Yang, F., Xiao, K., Pan, H. and Liu, J. 2021. Chloroplast: the emerging battlefield in plant-microbe interactions. Front. Plant Sci. 12:637853. 
  94. Zhai, Y., Yuan, Q., Qiu, S., Li, S., Li, M., Zheng, H., Wu, G., Lu, Y., Peng, J., Rao, S., Chen, J. and Yan, F. 2021. Turnip mosaic virus impairs perinuclear chloroplast clustering to facilitate viral infection. Plant Cell Environ. 44:3681-3699.  https://doi.org/10.1111/pce.14157
  95. Zhang, C., Grosic, S., Whitham, S. A. and Hill, J. H. 2012. The requirement of multiple defense genes in soybean Rsv1-mediated extreme resistance to soybean mosaic virus. Mol. Plant-Microbe Interact. 25:1307-1313.  https://doi.org/10.1094/MPMI-02-12-0046-R
  96. Zhao, J., Liu, Q., Zhang, H., Jia, Q., Hong, Y. and Liu, Y. 2013. The RubisCO small subunit is involved in tobamovirus movement and Tm-22-mediated extreme resistance. Plant Physiol. 161:374-383. 
  97. Zhao, J., Xu, J., Chen, B., Cui, W., Zhou, Z., Song, X, Chen, Z., Zheng, H., Lin, L., Peng, J., Lu, Y., Deng, Z., Chen, J. and Yan, F. 2019. Characterization of proteins involved in chloroplast targeting disturbed by rice stripe virus by novel protoplast-chloroplast proteomics. Int. J. Mol. Sci. 20:253. 
  98. Zhao, J., Zhang, X., Hong, Y. and Liu, Y. 2016. Chloroplast in plant-virus interaction. Front. Microbiol. 7:1565. 
  99. Zurbriggen, M. D., Carrillo, N. and Hajirezaei, M.-R. 2010. ROS signaling in the hypersensitive response: when, where and what for? Plant Signal. Behav. 5:393-396. https://doi.org/10.4161/psb.5.4.10793