Effects on the Initiation of Simian Virus 40 DNA Replication by Antisense RNA

  • Jeong, Bo-Won (Department of Microbiology, College of Natural Sciences, Seoul National University) ;
  • Kang, Hyen-Sam (Department of Microbiology, College of Natural Sciences, Seoul National University)
  • Received : 1995.08.08
  • Published : 1995.11.30

Abstract

When DNA replication of simian virus 40 (SV40) is initiated on the replication origin, the regions containing the initiation sites of DNA primase, which participates in the transient RNA primer synthesis for formation of Okazaki fragments in the lagging strand, were chosen as the target sites of antisense RNA for studies of the inhibition of SV40 DNA replication. Four recombinant transcription vectors, pUC-PrI, pUC-PrII, pGEM-PrBS, and pGEM-PrSN, coding antisense RNA, were constructed. Four antisense RNAs (named as I, II, BS, and SN) having the size of 18, 19,58, and 123 nts, respectively, were made from the transcription vectors by in vitro transcription. And then, antisense RNA in the concentration of 2${\mu}m$ were added to COS cells transfected with pATSV-W which is a recombinant plasmid containing the SV40 origin of replication. The inhibitory extent of DNA replication was measured by DpnI resistance and was confirmed by measurement of transient RNA primer synthesis. The result shows that six combinations of antisense RNA (I, II, BS, SN, I+SN, and BS+SN) lead to the inhibition of SV40 DNA replication by up to 85%.

Keywords

References

  1. Proc. Natl. Acad. Sci. USA v.85 Agrawal, S.;Goodchild, J.;Civeira, M.P.;Thornton, A.H.;Sarin, P.S.;Zamecnik, P.C. https://doi.org/10.1073/pnas.85.19.7079
  2. Nucleic Acids Res. v.18 Birg, F.;Pruseuth, D.;Zerial, A.;Thuong, N.T.;Asseline, U.;Doan, T.L.;Helene, C. https://doi.org/10.1093/nar/18.10.2901
  3. Nature v.355 Bock, L.C.;Griffin, L.C.;Latham, J.A.;Vermaas, E.H.;Toole, J.J. https://doi.org/10.1038/355564a0
  4. J. Virol. v.64 Buchanan, R.L.;Gralla, J.D.
  5. J. Virol. v.61 Chang, L.J.;Stoltzfus, C.M.
  6. Nucleic Acids Res. v.17 Cornelissen, M.;Vanderwiele, M. https://doi.org/10.1093/nar/17.3.833
  7. Gen. Anal. Tech. v.6 Daugherty, B.L.;Hotta, K.;Kumar, C.;Ahn, Y.H.;Zhu, J.;Pestka, S. https://doi.org/10.1016/0735-0651(89)90007-1
  8. Mol. Cell. Biol. v.6 Deb, S.;DeLucia, A.L.;Baur, C.P.;Koff, A.;Tegtmeyer, P. https://doi.org/10.1128/MCB.6.5.1663
  9. Proc. Natl. Acad. Sci. USA v.85 Delauney, A.J.;Tabaeizadeh, Z.;Verma, D.P.S. https://doi.org/10.1073/pnas.85.12.4300
  10. Mol. Cell. Biol. v.5 Gerard, R.D.;Gluzman, Y. https://doi.org/10.1128/MCB.5.11.3231
  11. Proc. Natl. Acad. Sci. USA v.85 Goodchild, J.;Agrawal, S.;Civeila, M.P.;Sarin, P.S.;Sun, D.;Zamecnik, P.C. https://doi.org/10.1073/pnas.85.15.5507
  12. Annu. Rev. Biochem. v.55 Green, P.J.;Pines, O.;Inouye, M. https://doi.org/10.1146/annurev.bi.55.070186.003033
  13. Mol. Cell. Biol. v.9 Guo, Z.S.;Gutierrez, C.;Heine, U.;Sogo, J.M.;DePampilis, M.L. https://doi.org/10.1128/MCB.9.9.3593
  14. Cell v.28 Hay, R.T.;DePampilis, M.L.
  15. Biochim. Biophys. Acta. v.1090 Henze, M.W. https://doi.org/10.1016/0167-4781(91)90099-8
  16. J. Mol. Biol. v.26 Hirt, B. https://doi.org/10.1016/0022-2836(67)90307-5
  17. Proc. Natl. Acad. Sci. USA v.83 Holt, J.T.;Gopal, T.V.;Moulton, A.D.;Nienhuis, A.W. https://doi.org/10.1073/pnas.83.13.4794
  18. Proc. Natl. Acad. Sci. USA v.86 Huang, N.;Wang, N.;Heppel, L.A. https://doi.org/10.1073/pnas.86.20.7904
  19. J. Biol. Chem. v.263 Ishimi, Y.;Claude, A.;Bullock, P.;Hurwitz, J.
  20. EMBO J. v.6 Jennings, P.A.;Molloy, P.L.
  21. J. Virol. v.65 Jonhi, S.;van Brunschot, A.;Asad, S.;van der Elst, I.;Read, S.E.;Bernstein, A.
  22. J. Clin. Invest. v.90 Kartha, S.;Tobach, F.G. https://doi.org/10.1172/JCI115851
  23. J. Biol. Chem. v.263 Kelly, T.J.
  24. Eur. J. Biochem. v.175 Kerr, S.M.;Stark, G.R.;Kerr, I.M. https://doi.org/10.1111/j.1432-1033.1988.tb14167.x
  25. Nucleic Acids Res. v.22 Kim, Y.S.;Kang, H.S.
  26. Nature v.333 Lichtenstein, C. https://doi.org/10.1038/333801a0
  27. Nucleic Acids Res. v.2 Lopata, M.A.;Clevelend, D.W.;Sollner-Webb, B.
  28. Proc. Natl. Acad. Sci. USA v.84 Matsukura, M.;Shinozuka, K.;Zon, G.;Mitsuya, H.;Reitz, M.;Cohen, J.S.;Broder, S. https://doi.org/10.1073/pnas.84.21.7706
  29. Proc. Natl. Acad. Sci. USA v.82 Melton, D.A. https://doi.org/10.1073/pnas.82.1.144
  30. Gene v.84 Miroshnichenko, O.I.;Ponomareva, T.I.;Tikchonenko, T.I. https://doi.org/10.1016/0378-1119(89)90142-X
  31. Gene v.72 Nordstrom, K.;Wagner, E.G.H.;Persson, C.;Blomberg, P.;Ohman, M. https://doi.org/10.1016/0378-1119(88)90148-5
  32. J. Virol. v.65 Parsons, R.E.;Stenger, J.E.;Ray, S.;Welker, R.;Anderson, M.E.;Tegtmeyer, P.
  33. J. Virol. v.64 Parsons, R.;Anderson, M.E.;Tegtmeyer, P.
  34. J. Virol. v.66 Parsons, R.;Tegtmeyer, P.
  35. Nucleic Acids Res. v.19 Rittner, K.;Sczakiel, G. https://doi.org/10.1093/nar/19.7.1421
  36. Proc. Natl. Acad. Sci. USA v.85 Sarin, P.S.;Agrawal, S.;Civeira, M.P.;Goodchird, J.;Ikeuchi, T.;Zamecnik, P.C. https://doi.org/10.1073/pnas.85.20.7448
  37. J. Virol. v.65 Sczakiel, G.;Pawlita, M.
  38. Nucleic Acids Res. v.17 Shibahara, S.;Mukai, S.;Morisawa, H.;Nakashima, H.;Kobayashi, S.;Yamamoto, N.
  39. J. Mol. Biol. v.213 Skeiky, Y.A.W.;Iatrou, K. https://doi.org/10.1016/S0022-2836(05)80121-4
  40. Biochem. Mol. Biol. v.25 Takayama, K.M.;Inouye, M.
  41. J. Mol. Biol. v.212 Tomizawa, J. https://doi.org/10.1016/0022-2836(90)90230-J
  42. J. Mol. Biol. v.212 Tomizawa, J. https://doi.org/10.1016/0022-2836(90)90231-A
  43. Proc. Natl. Acad. Sci. USA v.78 Tomizawa, J.;Itoh, T.;Seizer, G.;Son, T. https://doi.org/10.1073/pnas.78.3.1421
  44. Proc. Natl. Acad. Sci. USA v.81 Tseng, B.Y.;Ahlem, C.N. https://doi.org/10.1073/pnas.81.8.2342
  45. Nucleic Acids Res. v.17 Tseng, B.Y.;Prussak, C.E. https://doi.org/10.1093/nar/17.5.1953
  46. J. Mol. Biol. v.24 Ullman, A.;Jacob, F.;Monod, J. https://doi.org/10.1016/0022-2836(67)90341-5
  47. BioTechniques v.6 van der Krol, A.R.;Mol, J.N.M.;Stuije, A.R.
  48. J. Virol. v.63 von Ruden, T.;Gilboa, E.
  49. Gen. Develop. v.2 Walder, J. https://doi.org/10.1101/gad.2.5.502
  50. Biochem. Biophys. Res. Commun. v.166 Wang, D.;Huang, N.;Heppel, L.A. https://doi.org/10.1016/0006-291X(90)91938-O
  51. Proc. Natl. Acad. Sci. USA v.85 Wickstrom, E.L.;Bacon, T.A.;Gonzalez, A.;Freeman, D.L.;Lyman, G.H.;Wickstrom, E. https://doi.org/10.1073/pnas.85.4.1028
  52. Proc. Natl. Acad. Sci. USA v.83 Wormington, W.M. https://doi.org/10.1073/pnas.83.22.8639
  53. Proc. Natl. Acad. Sci. USA v.86 Yakubov, L.A.;Deeva, E.A.;Zarytova, V.F.;Ivanova, E.M.;Ryte, A.S.;Yurchenko, L.V.;Vlassov, V.V. https://doi.org/10.1073/pnas.86.17.6454
  54. Proc. Natl. Acad. Sci. USA v.84 Yokoyama, K.;Imamoto, F. https://doi.org/10.1073/pnas.84.21.7363
  55. Proc. Natl. Acad. Sci. USA v.83 Zamecnik, P.C.;Goodchild, J.;Taguchi, Y.;Sarin, P.S. https://doi.org/10.1073/pnas.83.12.4143
  56. Proc. Natl. Acad. Sci. USA v.75 Zamecnik, P.C.;Stephenson, M.L. https://doi.org/10.1073/pnas.75.1.280
  57. Nucleic Acids Res. v.15 Zerial, A.;Thuong, N.T.;Helene, C. https://doi.org/10.1093/nar/15.23.9909