• 제목/요약/키워드: RNA regulation

검색결과 1,585건 처리시간 0.027초

Regulation of Lipoprotein Lipase by Fasting in Epididymal and Mesenteric Adipocytes of Rats

  • Lee, Jae Joon;Chung, Chung Soo;Lee, Myung Yul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권5호
    • /
    • pp.715-722
    • /
    • 2008
  • There are marked variations in the activity of lipoprotein lipase (LPL) among adipose depots. The aim of this study was to compare the mechanisms of 24 h of fasting on LPL regulation between epididymal (EPI) adipocytes and mesenteric (MES) adipocytes in rats. 1-Day fasting consistently decreased activities of heparin-releasable LPL, total extractable LPL and cellular LPL markedly in both EPI and MES fat pads. LPL activity in MES fat pads was relatively lower than in the EPI fat pads. Consistent with data on LPL activity, the levels of expression of LPL mRNA in both nutritional states were lower in MES than EPI adipose tissue and isolated adipocytes. The decreased LPL activity after 1 day of fasting in MES adipocytes was explained mainly by a 50% decrease in the relative abundance of LPL mRNA level and a parallel 50% decrease in relative rate of LPL synthesis. In contrast, fasting of 1 day in EPI adipocytes decreased total LPL activity by 47% but did not affect LPL mRNA level or relative rate of LPL synthesis. A decrease in overall protein synthesis contributed to the decreased LPL activity after 1 day fasting both in EPI and MES adipocytes. In MES adipocytes the decrease in LPL activity, LPL mRNA and LPL synthesis were comparable, but in EPI adipocytes the changes in LPL activity were substantially larger than the changes in LPL mRNA level and LPL synthesis. Therefore, fasting decreased fat cell size, LPL activity, LPL mRNA level and relative rate of LPL synthesis in rats, and these effects were more marked in the MES adipocytes. These results clearly demonstrate the regional variations in the metabolic response of adipose tissue and LPL functions to fasting.

Testosterone Regulates NUCB2 mRNA Expression in Male Mouse Hypothalamus and Pituitary Gland

  • Seon, Sojeong;Jeon, Daun;Kim, Heejeong;Chung, Yiwa;Choi, Narae;Yang, Hyunwon
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권1호
    • /
    • pp.71-78
    • /
    • 2017
  • Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by $17{\beta}-estradiol$ and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland.

Comparison between TCDD and 3MC Action on CYPIAI Expression and EROD Activity in the Isolated Perfused Male Rat Liver

  • Ahn, Mee R.;Sheen, Yhun Y.
    • Biomolecules & Therapeutics
    • /
    • 제6권4호
    • /
    • pp.351-357
    • /
    • 1998
  • In order to understand the mechanism of the regulation of CYPIAI gene expression and ethoxy-resorufin deethylase (EROD) activity in ex vivo system, we have studied the action of TCDD and 3MC in theisolated perfused male rat liver. CYPIAI myNA level and EROD activity were measured in rat liver that wasisolated and perfused with va.ious chemicals such as 2,3,7,8-tet.achlorodibenzo-p-dioxin (TCDD), 3-methyl-cholanthrene (3MC), $17{\beta}$-est.adios ($E_2$), morin. TCDD or 3MC alone perfusion into male rat liver resulted in increase of CYPIAI mRNA level and the magnitude of stimulation was one and half times higher with TCDD treatment than 3MC treatment. However $E_2$ perfusion into male rat liver showed slight stimulation of CYPIAI mRNA level. When $10_{-8}$ M $E_2$ was perfused concomitantly with either $10_{-9}$ M TCDD or $10_{-9}$ M 3MC, stimulated CYPIAI mRNA by either TCDD or 3MC was inhibited. Morin was examined for its effects on CYPIAI mRNA level and result was similar to that was observed with estrogen except that morin alone did not change the level of CYPIAI mRNA. EROD activity was also stimulated with either TCDD or 3MC perfusion, and the magnitude of EROD stiumlation was similar to that of CYPIAI mRNA stimulation in response to TCDD or 3MC perfusion. This data is different from the data that we have obtained with female rat liver. Concomitant perfusion either $E_2$ or morin with TCDD or 3MC inhibited 3MC perFusion or TCDD perfusion stimulated EROD activity. These data confirm the hypothesis that TCDD and 3MC might act through the same mechanism of action on the regulation of CYPIAI gene expression in male rat liver.

  • PDF

Knockdown of Radixin by RNA interference Suppresses the Growth of Human Pancreatic Cancer Cells in Vitro and in Vivo

  • Chen, Shu-Dong;Song, Mao-Min;Zhong, Zhi-Qiang;Li, Na;Wang, Pi-Lin;Cheng, Shi;Bai, Ri-Xing;Yuan, Hui-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권3호
    • /
    • pp.753-759
    • /
    • 2012
  • Radixin, encoded by a gene on chromosome 11, plays important roles in cell motility, invasion and tumor progression. However, its function in pancreatic cancer remains elusive. In this study, radixin gene expression was suppressed with a lentivirus-mediated short-hairpin RNA (shRNA) method. We found that radixin shRNA caused down-regulation of radixin in PANC-1 cells, associated with inhibition of pancreatic cancer cell proliferation, survival, adhesion and invasive potential in vitro. When radixin-silenced cells were implanted in nude mice, tumor growth and microvessel density were significantly inhibited as compared to blank control cells or nonsense shRNA control cells. Thrombospondin-1 (TSP-1) and E-cadherin were up-regulated in radixin-silenced PANC-1 cells. Our results suggest that radixin might play a critical role in pancreatic cancer progression, possibly through invvolvement of down-regulation of TSP-1 and E-cadherin expression.

Hepatitis C Virus Nonstructural 5A Protein Interacts with Telomere Length Regulation Protein: Implications for Telomere Shortening in Patients Infected with HCV

  • Lim, Yun-Sook;Nguyen, Men T.N.;Pham, Thuy X.;Huynh, Trang T.X.;Park, Eun-Mee;Choi, Dong Hwa;Kang, Sang Min;Tark, Dongseob;Hwang, Soon B.
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.148-157
    • /
    • 2022
  • Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for viral propagation. Using protein microarray analysis, we identified 90 cellular proteins as HCV nonstructural 5A (NS5A) interacting partners, and selected telomere length regulation protein (TEN1) for further study. TEN1 forms a heterotrimeric complex with CTC and STN1, which is essential for telomere protection and maintenance. Telomere length decreases in patients with active HCV, chronic liver disease, and hepatocellular carcinoma. However, the molecular mechanism of telomere length shortening in HCV-associated disease is largely unknown. In the present study, protein interactions between NS5A and TEN1 were confirmed by immunoprecipitation assays. Silencing of TEN1 reduced both viral RNA and protein expression levels of HCV, while ectopic expression of the siRNA-resistant TEN1 recovered the viral protein level, suggesting that TEN1 was specifically required for HCV propagation. Importantly, we found that TEN1 is re-localized from the nucleus to the cytoplasm in HCV-infected cells. These data suggest that HCV exploits TEN1 to promote viral propagation and that telomere protection is compromised in HCV-infected cells. Overall, our findings provide mechanistic insight into the telomere shortening in HCV-infected cells.

MicroRNA-146a Enhances Helicobacter pylori Induced Cell Apoptosis in Human Gastric Cancer Epithelial Cells

  • Wu, Kai;Yang, Liu;Li, Cong;Zhu, Chao-Hui;Wang, Xin;Yao, Yi;Jia, Yu-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5583-5586
    • /
    • 2014
  • Helicobacter pylori (H. pylori) infection induces apoptosis in gastric epithelial cells, and this occurrence may link to gastric carcinogenesis. However, the regulatory mechanism of H. pylori-induced apoptosis is not clear. MicroRNA-146a has been implicated as a key regulator of the immune system. This report describes our discovery of molecular mechanisms of microRNA-146a regulation of apoptosis in human gastric cancer cells. We found that overexpression of microRNA-146a by transfecting microRNA-146a mimics could significantly enhance apoptosis, and this upregulation was triggered by COX-2 inhibition. Furthermore, we found that microRNA-146a density was positively correlated with apoptosis rates in H. pylori-positive gastric cancer tissues and intratumoral microRNA-146a density was negatively correlated with lymph node metastasis among H. pylori-positive gastric cancer patients. Understanding the important roles of microRNA-146a in regulating cell apoptosis in H. pylori infected human gastric cancer cells will contribute to the development of microRNA targeted therapy in the future.

A Highly Effective and Long-Lasting Inhibition of miRNAs with PNA-Based Antisense Oligonucleotides

  • Oh, Su Young;Ju, YeongSoon;Park, Heekyung
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.341-345
    • /
    • 2009
  • MiRNAs are non-coding RNAs that play a role in the regulation of major processes. The inhibition of miRNAs using antisense oligonucleotides (ASOs) is a unique and effective technique for the characterization and subsequent therapeutic targeting of miRNA function. Recent advances in ASO chemistry have been used to increase both the resistance to nucleases and the target affinity and specificity of these ASOs. Peptide nucleic acids (PNAs) are artificial oligonucleotides constructed on a peptide-like backbone. PNAs have a stronger affinity and greater specificity to DNA or RNA than natural nucleic acids and are resistant to nucleases, which is an essential characteristic for a miRNA inhibitor that will be exposed to serum and cellular nucleases. For increasing cell penetration, PNAs were conjugated with cell penetrating peptides (CPPs) at N-terminal. Among the tested CPPs, Tat-modified peptide-conjugated PNAs have most effective function for miRNA inhibition. PNA-based ASO was more effective miRNA inhibitor than other DNA-based ASOs and did not show cytotoxicity at concentration up to 1,000 nM. The effects of PNA-based ASOs were shown to persist for 9 days. Also, PNA-based ASOs showed considerable stability at storage temperature. These results suggest that PNA-based ASOs are more effective ASOs of miRNA than DNA-based ASOs and PNA-based ASO technology, compared with other technologies used to inhibit miRNA activity can be an effective tool for investigating miRNA functions.

DEAD/DExH-Box RNA Helicases in Selected Human Parasites

  • Marchat, Laurence A.;Arzola-Rodriguez, Silvia I.;Cruz, Olga Hernandez-de la;Lopez-Rosas, Itzel;Lopez-Camarillo, Cesar
    • Parasites, Hosts and Diseases
    • /
    • 제53권5호
    • /
    • pp.583-595
    • /
    • 2015
  • DEAD/DExH-box RNA helicases catalyze the folding and remodeling of RNA molecules in prokaryotic and eukaryotic cells, as well as in many viruses. They are characterized by the presence of the helicase domain with conserved motifs that are essential for ATP binding and hydrolysis, RNA interaction, and unwinding activities. Large families of DEAD/DExH-box proteins have been described in different organisms, and their role in all molecular processes involving RNA, from transcriptional regulation to mRNA decay, have been described. This review aims to summarize the current knowledge about DEAD/DExH-box proteins in selected protozoan and nematode parasites of medical importance worldwide, such as Plasmodium falciparum, Leishmania spp., Trypanosoma spp., Giardia lamblia, Entamoeba histolytica, and Brugia malayi. We discuss the functional characterization of several proteins in an attempt to understand better the molecular mechanisms involving RNA in these pathogens. The current data also highlight that DEAD/DExH-box RNA helicases might represent feasible drug targets due to their vital role in parasite growth and development.

파브리병의 바이오마커 발굴을 위한 파브리 마우스와 세포모델에서의 microRNA 발현 분석 (MicroRNA Expression Profiling in Cell and Mouse Models of Fabry Disease to Identify Biomarkers for Fabry Disease Nephropathy)

  • 정남희;박세영;전여진;최윤영;정성철
    • 대한유전성대사질환학회지
    • /
    • 제15권3호
    • /
    • pp.127-137
    • /
    • 2015
  • 본 연구에서는 파브리병의 마우스 모델과 세포모델을 대상으로 miRNA expression microarray를 적용시켜 질환 모델과 정상 대조군 간의 전체 miRNA의 발현 차이를 조사하였고, 발현량에서 차이를 보인 특정 miRNA를 선별한 후, 해당 miRNA의 표적 유전자의 발현량 변화를 살펴보아 파브리병의 신장병변에 대한 바이오마커 발굴과 발병기전을 알아보고자 하였다. MicroRNA array 결과, 파브리 마우스 신장 조직의 경우, 1,247개의 분석 대상 miRNA 중 5개가 발현이 증가되어 있으며 3개가 발현이 감소되어 있음을 확인하였다. 그 중에서 miR-149-5p의 발현이 파브리 마우스의 신장에서 2배 이상 감소되어 있으며, 특히 35주령 이하의 파브리 마우스에서 이러한 감소현상이 나타남을 확인하였고, 또한 lyso-Gb3를 처리하여 배양한 SV40 MES 13 세포에서도 miR-149-5p의 발현이 감소됨을 알 수 있었다. miR-149-5p의 발현감소는 EMT와 관련된 유전자의 발현을 증가시킴을 확인하였다. 본 연구를 통해 miR-149-5p의 생체지표로서의 가능성과 함께 miR-149-5p의 발현감소가 EMT를 통한 파브리병에서의 사구체 섬유화에 관여할 것이라는 가능성을 제시하고 있다.

Systematical Analysis of Cutaneous Squamous Cell Carcinoma Network of microRNAs, Transcription Factors, and Target and Host Genes

  • Wang, Ning;Xu, Zhi-Wen;Wang, Kun-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10355-10361
    • /
    • 2015
  • Background: MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Materials and Methods: Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Results: Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. Conclusions: The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.