MicroRNA Expression Profiling in Cell and Mouse Models of Fabry Disease to Identify Biomarkers for Fabry Disease Nephropathy

파브리병의 바이오마커 발굴을 위한 파브리 마우스와 세포모델에서의 microRNA 발현 분석

  • Jung, Namhee (Department of Biochemistry, School of Medicine, Ewha Womans University) ;
  • Park, Saeyoung (Department of Biochemistry, School of Medicine, Ewha Womans University) ;
  • Jeon, Yeo Jin (Department of Biochemistry, School of Medicine, Ewha Womans University) ;
  • Choi, Yoonyoung (Department of Biochemistry, School of Medicine, Ewha Womans University) ;
  • Jung, Sung-Chul (Department of Biochemistry, School of Medicine, Ewha Womans University)
  • 정남희 (이화여자대학교 의학전문대학원 생화학교실) ;
  • 박세영 (이화여자대학교 의학전문대학원 생화학교실) ;
  • 전여진 (이화여자대학교 의학전문대학원 생화학교실) ;
  • 최윤영 (이화여자대학교 의학전문대학원 생화학교실) ;
  • 정성철 (이화여자대학교 의학전문대학원 생화학교실)
  • Published : 2015.12.25

Abstract

Purpose: The main aim of this study was to compare and analyze expression profiles of microRNAs (miRNAs) to establish miRNA signature of Fabry nephropathy related epithelial mesenchymal transition (EMT). Methods: Expression profiles of miRNAs in kidney tissue samples and cell lines from normal and Fabry disease mouse model were examined by miRNA expression microarray analysis followed by quantitative real-time polymerase chain reaction analysis (qRT-PCR). Results: In the miRNA expression microarray analysis of Fabry mouse kidney tissues compared to wild type mouse, 5 and 3 miRNAs among 1,247 miRNAs examined were up- and down-regulated, respectively. Among them, miR-149-5p was down-regulated about 2-fold in Fabry kidney samples. The down-regulations of miR-149-5p were observed in kidney tissues of under 35 week-old-Fabry mice. However, this down-regulation was not observed in kidney tissues of 42 week-old Fabry mice. In SV40 MES 13 cells, mouse mesangial cells, treated with globotriaosylsphingosine (lyso-Gb3), miR-149-5p was also downregulated. The down-regulation of miR-149-5p induced up-regulation of its target genes related to EMT. Conclusion: The miRNA expression array and qRT-PCR results show that miR-149-5p expression was decreased in kidney tissues of Fabry mice compared to wild type mice under 35 weeks of age. Along with the observation of miR-149-5p expression in Fabry disease cell models, these results indicate that the down-regulated miR-149-5p were related to the biological response of mesangial cells to lyso-Gb3 and also have influence to the transcriptional up-regulation of its target genes. These results suggest miR-149-5p might play important roles in the Fabry nephropathy.

본 연구에서는 파브리병의 마우스 모델과 세포모델을 대상으로 miRNA expression microarray를 적용시켜 질환 모델과 정상 대조군 간의 전체 miRNA의 발현 차이를 조사하였고, 발현량에서 차이를 보인 특정 miRNA를 선별한 후, 해당 miRNA의 표적 유전자의 발현량 변화를 살펴보아 파브리병의 신장병변에 대한 바이오마커 발굴과 발병기전을 알아보고자 하였다. MicroRNA array 결과, 파브리 마우스 신장 조직의 경우, 1,247개의 분석 대상 miRNA 중 5개가 발현이 증가되어 있으며 3개가 발현이 감소되어 있음을 확인하였다. 그 중에서 miR-149-5p의 발현이 파브리 마우스의 신장에서 2배 이상 감소되어 있으며, 특히 35주령 이하의 파브리 마우스에서 이러한 감소현상이 나타남을 확인하였고, 또한 lyso-Gb3를 처리하여 배양한 SV40 MES 13 세포에서도 miR-149-5p의 발현이 감소됨을 알 수 있었다. miR-149-5p의 발현감소는 EMT와 관련된 유전자의 발현을 증가시킴을 확인하였다. 본 연구를 통해 miR-149-5p의 생체지표로서의 가능성과 함께 miR-149-5p의 발현감소가 EMT를 통한 파브리병에서의 사구체 섬유화에 관여할 것이라는 가능성을 제시하고 있다.

Keywords

References

  1. Germain DP. Fabry disease. Orphanet J Rare Dis 2010;5:30. https://doi.org/10.1186/1750-1172-5-30
  2. Thurberg BL, Fallon JT, Mitchell R, Aretz T, Gordon RE, O'Callaghan MW. Cardiac microvascular pathology in Fabry disease: evaluation of endomyocardial biopsies before and after enzyme replacement therapy. Circulation 2009;119:2561-7. https://doi.org/10.1161/CIRCULATIONAHA.108.841494
  3. Thurberg BL, Randolph Byers H, Granter SR, Phelps RG, Gordon RE, O'Callaghan M. Monitoring the 3-year efficacy of enzyme replacement therapy in fabry disease by repeated skin biopsies. J Invest Dermatol 2004;122:900-8. https://doi.org/10.1111/j.0022-202X.2004.22425.x
  4. Thurberg BL, Rennke H, Colvin RB, Dikman S, Gordon RE, Collins AB, et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int 2002;62:1933-46. https://doi.org/10.1046/j.1523-1755.2002.00675.x
  5. Aerts JM, Groener JE, Kuiper S, Donker-Koopman WE, Strijland A, Ottenhoff R, et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 2008;105:2812-7. https://doi.org/10.1073/pnas.0712309105
  6. Wijburg FA, Benichou B, Bichet DG, Clarke LA, Dostalova G, Fainboim A, et al. Characterization of early disease status in treatment-naive male paediatric patients with Fabry disease enrolled in a randomized clinical trial. PLoS One 2015;10:e0124987. https://doi.org/10.1371/journal.pone.0124987
  7. Fogo AB, Bostad L, Svarstad E, Cook WJ, Moll S, Barbey F, et al. Scoring system for renal pathology in Fabry disease: report of the International Study Group of Fabry Nephropathy (ISGFN). Nephrol Dial Transplant 2010;25:2168-77. https://doi.org/10.1093/ndt/gfp528
  8. Nakao S, Kodama C, Takenaka T, Tanaka A, Yasumoto Y, Yoshida A, et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a "renal variant" phenotype. Kidney Int 2003;64: 801-7. https://doi.org/10.1046/j.1523-1755.2003.00160.x
  9. Wang JY, Gao YB, Zhang N, Zou DW, Wang P, Zhu ZY, et al. miR-21 overexpression enhances TGFbeta1- induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol 2014;392: 163-72. https://doi.org/10.1016/j.mce.2014.05.018
  10. Jeon YJ, Jung N, Park JW, Park HY, Jung SC. Epithelial-Mesenchymal Transition in Kidney Tubular Epithelial Cells Induced by Globotriaosylsphingosine and Globotriaosylceramide. PLoS One 2015;10:e0136442. https://doi.org/10.1371/journal.pone.0136442
  11. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 2015;21:998-1009. https://doi.org/10.1038/nm.3902
  12. Morizane R, Fujii S, Monkawa T, Hiratsuka K, Yamaguchi S, Homma K, et al. miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction. Sci Rep 2014;4:4578.
  13. Liu T, Nie F, Yang X, Wang X, Yuan Y, Lv Z, et al. MicroRNA-590 is an EMT-suppressive microRNA involved in the TGFbeta signaling pathway. Mol Med Rep 2015;12:7403-11. https://doi.org/10.3892/mmr.2015.4374
  14. Morizane R, Fujii S, Monkawa T, Hiratsuka K, Yamaguchi S, Homma K, et al. miR-363 induces transdifferentiation of human kidney tubular cells to mesenchymal phenotype. Clin Exp Nephrol 2015.
  15. Xiao L, Zhou X, Liu F, Hu C, Zhu X, Luo Y, et al. MicroRNA-129-5p modulates epithelial-to-mesenchymal transition by targeting SIP1 and SOX4 during peritoneal dialysis. Lab Invest 2015;95:817-32. https://doi.org/10.1038/labinvest.2015.57
  16. Huang Y, Tong J, He F, Yu X, Fan L, Hu J, et al. miR-141 regulates TGF-beta1-induced epithelialmesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells. Int J Mol Med 2015;35:311-8. https://doi.org/10.3892/ijmm.2014.2008
  17. Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015;87:3-14. https://doi.org/10.1016/j.addr.2015.05.001
  18. Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis 2015;35:3-11. https://doi.org/10.1055/s-0034-1397344
  19. Bendoraite A, Knouf EC, Garg KS, Parkin RK, Kroh EM, O'Briant KC, et al. Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol 2010;116:117-25. https://doi.org/10.1016/j.ygyno.2009.08.009
  20. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011;22:1686-98. https://doi.org/10.1091/mbc.E11-02-0103
  21. Oba S, Mizutani T, Suzuki E, Nishimatsu H, Takahashi M, Ogawa Y, et al. A useful method of identifying of miRNAs which can down-regulate Zeb-2. BMC Res Notes 2013;6:470. https://doi.org/10.1186/1756-0500-6-470
  22. Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer 2013;132:745-54. https://doi.org/10.1002/ijc.27708
  23. Zhang L, Sun J, Wang B, Ren JC, Su W, Zhang T. MicroRNA-10b Triggers the Epithelial-Mesenchymal Transition (EMT) of Laryngeal Carcinoma Hep-2 Cells by Directly Targeting the E-cadherin. Appl Biochem Biotechnol 2015;176:33-44. https://doi.org/10.1007/s12010-015-1505-6
  24. Palmieri D, Capponi S, Geroldi A, Mura M, Mandich P, Palombo D. TNFalpha induces the expression of genes associated with endothelial dysfunction through p38MAPK-mediated down-regulation of miR-149. Biochem Biophys Res Commun 2014;443:246-51. https://doi.org/10.1016/j.bbrc.2013.11.092
  25. Xu K, Liu X, Mao X, Xue L, Wang R, Chen L, et al. MicroRNA-149 suppresses colorectal cancer cell migration and invasion by directly targeting forkhead box transcription factor FOXM1. Cell Physiol Biochem 2015;35:499-515. https://doi.org/10.1159/000369715
  26. Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, et al. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer 2013;108:644-52. https://doi.org/10.1038/bjc.2013.8
  27. Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl) 2013;91:431-7. https://doi.org/10.1007/s00109-013-1020-6
  28. Rak J. Extracellular vesicles - biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 2013;4:21.
  29. Rana S, Malinowska K, Zoller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 2013;15:281-95. https://doi.org/10.1593/neo.122010
  30. Pan SJ, Zhan SK, Pei BG, Sun QF, Bian LG, Sun BM. MicroRNA-149 inhibits proliferation and invasion of glioma cells via blockade of AKT1 signaling. Int J Immunopathol Pharmacol 2012;25:871-81. https://doi.org/10.1177/039463201202500405
  31. Zhang Y, Guo X, Xiong L, Yu L, Li Z, Guo Q, et al. Comprehensive analysis of microRNA-regulated protein interaction network reveals the tumor suppressive role of microRNA-149 in human hepatocellular carcinoma via targeting AKT-mTOR pathway. Mol Cancer 2014;13:253. https://doi.org/10.1186/1476-4598-13-253
  32. Chan SH, Huang WC, Chang JW, Chang KJ, Kuo WH, Wang MY, et al. MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene 2014;33:4496-507. https://doi.org/10.1038/onc.2014.10
  33. Li P, Shan JX, Chen XH, Zhang D, Su LP, Huang XY, et al. Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment. Cell Res 2015;25:588-603. https://doi.org/10.1038/cr.2015.51
  34. Shin YJ, Jeon YJ, Jung N, Park JW, Park HY, Jung SC. Substrate-specific gene expression profiles in different kidney cell types are associated with Fabry disease. Mol Med Rep 2015;12:5049-57. https://doi.org/10.3892/mmr.2015.4010
  35. Ke Y, Zhao W, Xiong J, Cao R. miR-149 Inhibits Non-Small-Cell Lung Cancer Cells EMT by Targeting FOXM1. Biochem Res Int. 2013;2013:506731.
  36. Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng GQ, et al. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J Cell Biochem 2011;112: 2508-17. https://doi.org/10.1002/jcb.23175
  37. Shiozuka C, Taguchi A, Matsuda J, Noguchi Y, Kunieda T, Uchio-Yamada K, et al. Increased globotriaosylceramide levels in a transgenic mouse expressing human a1,4-galactosyltransferase and a mouse model for treating Fabry disease. J Biochem 2011;149:161-70. https://doi.org/10.1093/jb/mvq125