Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0167

Hepatitis C Virus Nonstructural 5A Protein Interacts with Telomere Length Regulation Protein: Implications for Telomere Shortening in Patients Infected with HCV  

Lim, Yun-Sook (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University)
Nguyen, Men T.N. (Ilsong Institute of Life Science, Hallym University)
Pham, Thuy X. (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University)
Huynh, Trang T.X. (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University)
Park, Eun-Mee (Center for Immunology and Pathology, National Institute of Health, Korea Center for Disease Control & Prevention)
Choi, Dong Hwa (Biocenter, Gyeonggido Business & Science Accelerator)
Kang, Sang Min (Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University)
Tark, Dongseob (Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University)
Hwang, Soon B. (Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University)
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for viral propagation. Using protein microarray analysis, we identified 90 cellular proteins as HCV nonstructural 5A (NS5A) interacting partners, and selected telomere length regulation protein (TEN1) for further study. TEN1 forms a heterotrimeric complex with CTC and STN1, which is essential for telomere protection and maintenance. Telomere length decreases in patients with active HCV, chronic liver disease, and hepatocellular carcinoma. However, the molecular mechanism of telomere length shortening in HCV-associated disease is largely unknown. In the present study, protein interactions between NS5A and TEN1 were confirmed by immunoprecipitation assays. Silencing of TEN1 reduced both viral RNA and protein expression levels of HCV, while ectopic expression of the siRNA-resistant TEN1 recovered the viral protein level, suggesting that TEN1 was specifically required for HCV propagation. Importantly, we found that TEN1 is re-localized from the nucleus to the cytoplasm in HCV-infected cells. These data suggest that HCV exploits TEN1 to promote viral propagation and that telomere protection is compromised in HCV-infected cells. Overall, our findings provide mechanistic insight into the telomere shortening in HCV-infected cells.
Keywords
hepatitis C virus; NS5A; protein microarray; telomere shortening; TEN1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Surovtseva, Y.V., Churikov, D., Boltz, K.A., Song, X., Lamb, J.C., Warrington, R., Leehy, K., Heacock, M., Price, C.M., and Shippen, D.E. (2009). Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36, 207-218.   DOI
2 Casteel, D.E., Zhuang, S., Zeng, Y., Perrino, F.W., Boss, G.R., Goulian, M., and Pilz, R.B. (2009). A DNA polymerase-α.primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J. Biol. Chem. 284, 5807-5818.   DOI
3 Choi, J.W., Kim, J.W., Nguyen, L.P., Nguyen, H.C., Park, E.M., Choi, D.H., Han, K.M., Kang, S.M., Tark, D., Lim, Y.S., et al. (2020). Nonstructural NS5A protein regulates LIM and SH3 domain protein 1 to promote hepatitis C virus propagation. Mol. Cells 43, 469-478.   DOI
4 Giannini, C. and Brechot, C. (2003). Hepatitis C virus biology. Cell Death Differ. 10 Suppl 1, S27-S38.   DOI
5 Kasbek, C., Wang, F., and Price, C.M. (2013). Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J. Biol. Chem. 288, 30139-30150.   DOI
6 Kim, S., Welsch, C., Yi, M., and Lemon, S.M. (2011). Regulation of the production of infectious genotype 1a hepatitis C virus by NS5A domain III. J. Virol. 85, 6645-6656.   DOI
7 Kitada, T., Seki, S., Kawakita, N., Kuroki, T., and Monna, T. (1995). Telomere shortening in chronic liver diseases. Biochem. Biophys. Res. Commun. 211, 33-39.   DOI
8 Lim, C.J. and Cech, T.R. (2021). Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat. Rev. Mol. Cell Biol. 22, 283-298.   DOI
9 Lindenbach, B.D. and Rice, C.M. (2005). Unravelling hepatitis C virus replication from genome to function. Nature 436, 933-938.   DOI
10 Lim, Y.S. and Hwang, S.B. (2011). Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIα and regulates viral propagation. J. Biol. Chem. 286, 11290-11298.   DOI
11 Macdonald, A. and Harris, M. (2004). Hepatitis C virus NS5A: tales of a promiscuous protein. J. Gen. Virol. 85, 2485-2502.   DOI
12 Huang, C., Dai, X., and Chai, W. (2012). Human Stn1 protects telomere integrity by promoting efficient lagging-strand synthesis at telomeres and mediating C-strand fill-in. Cell Res. 22, 1681-1695.   DOI
13 Nakaoka, H., Nishiyama, A., Saito, M., and Ishikawa, F. (2012). Xenopus laevis Ctc1-Stn1-Ten1 (xCST) protein complex is involved in priming DNA synthesis on single-stranded DNA template in Xenopus egg extract. J. Biol. Chem. 287, 619-627.   DOI
14 Saito, I., Miyamura, T., Ohbayashi, A., Harada, H., Katayama, T., Kikuchi, S., Watanabe, Y., Koi, S., Onji, M., Ohta, Y., et al. (1990). Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc. Natl. Acad. Sci. U. S. A. 87, 6547-6549.   DOI
15 Simmonds, P. (2004). Genetic diversity and evolution of hepatitis C virus--15 years on. J. Gen. Virol. 85, 3173-3188.   DOI
16 Srinivas, N., Rachakonda, S., and Kumar, R. (2020). Telomeres and telomere length: a general overview. Cancers (Basel) 12, 558.   DOI
17 Tellinghuisen, T.L., Foss, K.L., and Treadaway, J. (2008). Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog. 4, e1000032.   DOI
18 Appel N., Zayas, M., Miller, S., Krijnse-Locker, J., Schaller, T., Friebe, P., Kallis, S., Engel, U., and Bartenschlager, R. (2008). Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog. 4, e1000035.   DOI
19 Feng, X., Hsu, S.J., Kasbek, C., Chaiken, M., and Price, C.M. (2017). CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance. Nucleic Acids Res. 45, 4281-4293.   DOI
20 McGivern, D.R. and Lemon, S.M. (2011). Virus-specific mechanisms of carcinogenesis in hepatitis C virus associated liver cancer. Oncogene 30, 1969-1983.   DOI
21 Miyake, Y., Nakamura, M., Navetani, A., Shimamura, S., Tamura, M., Yonehara, S., Saito, M., and Ishikawa, F. (2009). RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 36, 193-206.   DOI
22 Wiemann, S.U., Satyanarayana, A., Tsahuridu, M., Tillmann, H.L., Zender, L., Klempnauer, J., Flemming, P., Franco, S., Blasco, M.A., Manns, M.P., et al. (2002). Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 16, 935-942.   DOI
23 Biron-Shental, T., Amiel, A., Anchidin, R., Sharony, R., Hadary, R., and Kitay-Cohen, Y. (2013). Telomere length and telomerase reverse transcriptase mRNA expression in patients with hepatitis C. Hepatogastroenterology 60, 1713-1716.
24 Cawthon, R.M. (2009). Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 37, e21.   DOI
25 Chen, L.Y., Redon, S., and Lingner, J. (2012). The human CST complex is a terminator of telomerase activity. Nature 488, 540-544.   DOI
26 Tran, G.V.Q., Luong, T.T.D., Park, E.M., Kim, J.W., Choi, J.W., Park, C., Lim, Y.S., and Hwang, S.B. (2016). Nonstructural 5A protein of hepatitis C virus regulates soluble resistance-related calcium-binding protein activity for viral propagation. J. Virol. 90, 2794-2805.   DOI
27 Turner, K.J., Vasu, V., and Griffin, D.K. (2019). Telomere biology and human phenotype. Cells 8, 73.   DOI
28 Kitay-Cohen, Y., Goldberg-Bittman, L., Hadary, R., Fejgin, M.D., and Amiel, A. (2008). Telomere length in Hepatitis C. Cancer Genet. Cytogenet. 187, 34-38.   DOI
29 Gu, P., Min, J.N., Wang, Y., Huang, C., Peng, T., Chai, W., and Chang, S. (2012). CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J. 31, 2309-2321.   DOI
30 Kelich, J.M., Papaioannou, H., and Skordalakes, E. (2021). Pol α-primase dependent nuclear localization of the mammalian CST complex. Commun. Biol. 4, 349.   DOI
31 Lim, Y.S., Tran, H.T., Park, S.J., Yim, S.A., and Hwang, S.B. (2011). Peptidyl-prolyl isomerase Pin1 is a cellular factor required for hepatitis C virus propagation. J. Virol. 85, 8777-8788.   DOI
32 Park, C., Min, S., Park, E.M., Lim, Y.S., Kang, S.M., Suzuki, T., Shin, E.C., and Hwang, S.B. (2015). Pim kinase interacts with nonstructural 5A protein and regulates hepatitis C virus entry. J. Virol. 89, 10073-10086.   DOI
33 Song, X., Leehy, K., Warrington, R.T., Lamb, J.C., Surovtseva, Y.V., and Shippen, D.E. (2008). STN1 protects chromosome ends in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 105, 19815-19820.   DOI