DOI QR코드

DOI QR Code

DEAD/DExH-Box RNA Helicases in Selected Human Parasites

  • Marchat, Laurence A. (Institutional Program of Molecular Biomedicine, Biotechnology Program, National School of Medicine and Homeopathy of the National Polytechnic Institute) ;
  • Arzola-Rodriguez, Silvia I. (Genomics Sciences Program, Autonomous University of Mexico City) ;
  • Cruz, Olga Hernandez-de la (Genomics Sciences Program, Autonomous University of Mexico City) ;
  • Lopez-Rosas, Itzel (Institutional Program of Molecular Biomedicine, Biotechnology Program, National School of Medicine and Homeopathy of the National Polytechnic Institute) ;
  • Lopez-Camarillo, Cesar (Genomics Sciences Program, Autonomous University of Mexico City)
  • Received : 2015.05.08
  • Accepted : 2015.08.10
  • Published : 2015.10.31

Abstract

DEAD/DExH-box RNA helicases catalyze the folding and remodeling of RNA molecules in prokaryotic and eukaryotic cells, as well as in many viruses. They are characterized by the presence of the helicase domain with conserved motifs that are essential for ATP binding and hydrolysis, RNA interaction, and unwinding activities. Large families of DEAD/DExH-box proteins have been described in different organisms, and their role in all molecular processes involving RNA, from transcriptional regulation to mRNA decay, have been described. This review aims to summarize the current knowledge about DEAD/DExH-box proteins in selected protozoan and nematode parasites of medical importance worldwide, such as Plasmodium falciparum, Leishmania spp., Trypanosoma spp., Giardia lamblia, Entamoeba histolytica, and Brugia malayi. We discuss the functional characterization of several proteins in an attempt to understand better the molecular mechanisms involving RNA in these pathogens. The current data also highlight that DEAD/DExH-box RNA helicases might represent feasible drug targets due to their vital role in parasite growth and development.

Keywords

References

  1. Gorbalenya A, Koonin E. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Biol 1993; 3: 419-429. https://doi.org/10.1016/S0959-440X(05)80116-2
  2. Linder P. Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res 2006; 34: 4168-4180. https://doi.org/10.1093/nar/gkl468
  3. Fairman-Williams ME, Guenther U-P, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 2010; 20: 313-324. https://doi.org/10.1016/j.sbi.2010.03.011
  4. Cordin O, Banroques J, Tanner NK, Linder P. The DEAD-box protein family of RNA helicases. Gene 2006; 367: 17-37. https://doi.org/10.1016/j.gene.2005.10.019
  5. Henn A, Bradley MJ, De La Cruz EM. ATP utilization and RNA conformational rearrangement by DEAD-box proteins. Annu Rev Biophys 2012; 41: 247-267. https://doi.org/10.1146/annurev-biophys-050511-102243
  6. Chamot D, Colvin KR, Kujat-Choy SL, Owttrim GW. RNA structural rearrangement via unwinding and annealing by the cyanobacterial RNA helicase, CrhR. J Biol Chem 2005; 280: 2036-2044. https://doi.org/10.1074/jbc.M409700200
  7. Gebhard LG, Kaufman SB, Gamarnik AV. Novel ATP-independent RNA annealing activity of the dengue virus NS3 helicase. PLoS One 2012; 7: e36244. https://doi.org/10.1371/journal.pone.0036244
  8. Putnam AA, Jankowsky E. DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim Biophys Acta 2013; 1829: 884-893. https://doi.org/10.1016/j.bbagrm.2013.02.002
  9. Jankowsky E. RNA Helicases at work: binding and rearranging. Trends Biochem Sci 2011; 36: 19-29. https://doi.org/10.1016/j.tibs.2010.07.008
  10. Steimer L, Klostermeier D. RNA helicases in infection and disease. RNA Biol 2012; (6): 751-771.
  11. WHO (World Health Organization). World Malaria report: 2011. www.who.int/iris/handle/10665/44792#sthash.bhDDQG00.dpuf.
  12. Tuteja R, Pradhan A. Unraveling the "DEAD-box" helicases of Plasmodium falciparum. Gene 2006; 376: 1-12. https://doi.org/10.1016/j.gene.2006.03.007
  13. Tuteja R. Genome wide identification of Plasmodium falciparum helicases. A comparison with human host. Cell Cycle 2010; 9: 104-120. https://doi.org/10.4161/cc.9.1.10241
  14. Teixeira SM, de Paiva RM, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 2012; 35: 1-17. https://doi.org/10.1590/S1415-47572012005000008
  15. Gargantini PR, Lujan HD, Pereira CA. In silico analysis of trypanosomatids’ helicases. FEMS Microbiol Lett 2012; 335: 123-129. https://doi.org/10.1111/j.1574-6968.2012.02644.x
  16. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309: 436-442. https://doi.org/10.1126/science.1112680
  17. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309: 416-422. https://doi.org/10.1126/science.1112642
  18. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005; 309: 409-415. https://doi.org/10.1126/science.1112631
  19. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science 2005; 309: 404-409. https://doi.org/10.1126/science.1112181
  20. Gargantini PR, Serradell MC, Torri A, Lujan HD. Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts. BMC Microbiol 2012; 12: 284. https://doi.org/10.1186/1471-2180-12-284
  21. Feng Y, Xiao L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 2011; 24: 110-140 https://doi.org/10.1128/CMR.00033-10
  22. Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 2003; 426: 172-176. https://doi.org/10.1038/nature01945
  23. Adam RD. The Giardia lamblia genome. Int J Parasitol 2000; 30: 475-484. https://doi.org/10.1016/S0020-7519(99)00191-5
  24. Jackson TF. Epidemiology. In Ravdin JI ed, Amebiasis. London, UK. Imperial College Press. 2000, pp. 47-63.
  25. Loftus DJ, Hall N. Entamoeba: still more to be learned from the genome. Trends Parasitol 2005; 21: 453. https://doi.org/10.1016/j.pt.2005.08.007
  26. Marchat LA, Orozco E, Guillen N, Weber C, Lopez-Camarillo C. Putative DEAD and DExH-box RNA helicases families in Entamoeba histolytica. Gene 2008; 424: 1-10. https://doi.org/10.1016/j.gene.2008.07.042
  27. World Health Organization. Global program to eliminate lymphatic filariasis (GPELF), 2010. Geneva, Switzerland. Progress report 2000-2009 and strategic plan 2010-2020. 2010.
  28. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, et al. Draft genome of the filarial nematode parasite Brugia malayi. Science 2007; 317: 1756-1760. https://doi.org/10.1126/science.1145406
  29. Tuteja R, Ansari A, Suthar MK, Saxena JK. Genome wide computational analysis of Brugia malayi helicases: a comparison with human host. Gene 2012; 499: 202-208. https://doi.org/10.1016/j.gene.2012.02.036
  30. Boc A., Diallo AB, Makarenkov V. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks, Nucleic Acids Res 2012; 40: W573-W579. https://doi.org/10.1093/nar/gks485
  31. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22: 2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  32. Falk S, Weir JR, Hentschel J, Reichelt P, Bonneau F, Conti E. The molecular architecture of the TRAMP complex reveals the organization and interplay of its two catalytic activities. Mol Cell 2014; 55: 856-867. https://doi.org/10.1016/j.molcel.2014.07.020
  33. Cristodero M, Clayton CE. Trypanosome MTR4 is involved in rRNA processing. Nucleic Acids Res 2007; 35: 7023-7030. https://doi.org/10.1093/nar/gkm736
  34. Kressler D, Hurt E, Bassler J. Driving ribosome assembly. Biochim Biophys Acta 2009; 1803: 673-683.
  35. Emery B, De La Cruz J, Rocak S, Deloche O, Linder P. Has1p, a member of the DEAD-box family, is required for 40S ribosomal subunit biogenesis in Saccharomyces cerevisiae. Mol Microbiol 2004; 52: 141-158. https://doi.org/10.1111/j.1365-2958.2003.03973.x
  36. Prakash K, Tuteja R. A novel DEAD box helicase Has1p from Plasmodium falciparum; N-terminal is essential for activity. Parasitol Int 2010; 59: 271-277. https://doi.org/10.1016/j.parint.2010.02.003
  37. Chang TH, Tung L, Yeh FL, Chen JH, Chang SL. Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing. Biochim Biophys Acta 2013; 1829: 764-774. https://doi.org/10.1016/j.bbagrm.2013.02.006
  38. Tuteja R. Helicases involved in splicing from malaria parasite Plasmodium falciparum. Parasitol Int 2011: 60: 335-340. https://doi.org/10.1016/j.parint.2011.09.007
  39. Shankar J, Pradhan A, Tuteja R. Isolation and characterization of Plasmodium falciparum UAP56 homologue: evidence for the coupling of RNA binding and splicing activity by site-directed mutations. Arch Biochem Biophys 2008; 478: 143-153. https://doi.org/10.1016/j.abb.2008.07.027
  40. Dhalia R, Marinsek N, Reis C, Katz R, Muniz J, Standart N, Carrington M, de Melo Neto OP. The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Res 2006; 34: 2495-2507. https://doi.org/10.1093/nar/gkl290
  41. Silva MT, Ambrosio DL, Trevelin CC, Watanabe TF, Laure HJ, Greene LJ, Rosa JC, Valentini SR, Cicarelli RM. New insights into trypanosomatid U5 small nuclear ribonucleoproteins. Mem Inst Oswaldo Cruz 2011; 106: 130-138.
  42. Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Luhrmann R, Wahl MC. Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Mol Cell 2009; 35: 454-466. https://doi.org/10.1016/j.molcel.2009.08.006
  43. Ambrosio DL, Lee JH, Panigrahi AK, Nguyen TN, Cicarelli RM, Gunzl A. Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors. Eukaryot Cell 2009; 8: 990-1000. https://doi.org/10.1128/EC.00075-09
  44. Valdes J, Nozaki T, Sato E, Chiba Y, Nakada-Tsukui K, Villegas-Sepulveda N, Winkler R, Azuara-Liceaga E, Mendoza-Figueroa MS, Watanabe N, Santos HJ, Saito-Nakano Y, Galindo-Rosales JM. Proteomic analysis of Entamoeba histolytica in vivo assembled pre-mRNA splicing complexes. J Proteomics 2014; 111: 30-45. https://doi.org/10.1016/j.jprot.2014.07.027
  45. Tieg B, Krebber H. Dbp5-from nuclear export to translation. Biochim Biophys Acta 2013; 1829: 791-798. https://doi.org/10.1016/j.bbagrm.2012.10.010
  46. Mehta J, Tuteja R. A novel dual Dbp5/DDX19 homologue from Plasmodium falciparum requires Q motif for activity. Mol Biochem Parasitol 2011; 176: 58-63. https://doi.org/10.1016/j.molbiopara.2010.12.003
  47. Mehta J, Tuteja R. Inhibition of unwinding and ATPase activities of Plasmodium falciparum Dbp5/DDX19 homolog. Commun Integr Biol 2011; 4: 299-303. https://doi.org/10.4161/cib.4.3.14778
  48. Serpeloni M, Vidal NM, Goldenberg S, Avila AR, Hoffmann FG. Comparative genomics of proteins involved in RNA nucleocytoplasmic export. BMC Evol Biol 2011; 11: 7. https://doi.org/10.1186/1471-2148-11-7
  49. Inoue AH, Serpeloni M, Hiraiwa PM, Yamada-Ogatta SF, Muniz JRC, Motta MC, Vidal NM, Goldenberg S, Avila AR. Identification of a novel nucleocytoplasmic shuttling RNA helicase of trypanosomes. PLoS One 2014; 9: e109521. https://doi.org/10.1371/journal.pone.0109521
  50. Ling SH, Cheng Z, Song H. Structural aspects of RNA helicases in eukaryotic mRNA decay. Biosci Rep 2009; 29: 339-349. https://doi.org/10.1042/BSR20090034
  51. Pradhan A, Tuteja R. Bipolar, dual Plasmodium falciparum helicase 45 expressed in the intraeythrocytic developmental cycle is required for parasite growth. J Mol Biol 2007; 373: 268-281. https://doi.org/10.1016/j.jmb.2007.07.056
  52. Pradhan A, Hussan E, Tuteja R. Characterization of replication fork and phosphorylation stimulated Plasmodium falciparum helicase 45. Gene 2008; 420: 66-75. https://doi.org/10.1016/j.gene.2008.05.005
  53. Dhalia R, Reis C, Freire E, Rocha P, Katz R, Muniz JR, Standart N, de Melo Neto OP. Translation initiation in Leshmania major: characterization of multiple eIF4F subunit homologues. Mol Biochem Parasitol 2005; 140: 23-41. https://doi.org/10.1016/j.molbiopara.2004.12.001
  54. Skeiky YA, Kennedy M, Kaufman D, Borges MM, Guderian JA, Scholler JK, Ovendale PJ, Picha KS, Morrissey PJ, Grabstein KH, Campos-Neto A, Reed SG. LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile. J Immunol 1998; 161: 6171-6179.
  55. Barhoumi M, Tanner NK, Banroques J, Linder P, Guizani I. Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast. FEBS J 2006; 273: 5086-5100. https://doi.org/10.1111/j.1742-4658.2006.05506.x
  56. Senissar M, Le Saux A, Belgareh-Touze N, Adam C, Banroques J, Tanner NK. The DEAD-box helicase Ded1 from yeast is an mRNP cap-associated protein that shuttles between the cytoplasm and nucleus. Nucleic Acids Res 2014; 42: 10005-10022. https://doi.org/10.1093/nar/gku584
  57. Zinoviev A, Akum Y, Yahav T, Shapira M. Gene duplication in trypanosomatids - two DED1 paralogs are functionally redundant and differentially expressed during the life cycle. Mol Biochem Parasitol 2010; 185: 127-136.
  58. Zinoviev A, Leger M, Wagner G, Shapira M. A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways. Nucleic Acids Res 2011; 39: 8404-8415. https://doi.org/10.1093/nar/gkr555
  59. Lopez-Camarillo C, Garcia-Hernandez ML, Marchat LA, Luna-Arias JP, Hernandez de la Cruz O, Mendoza L, Orozco E. Entamoeba histolytica EhDEAD1 is a conserved DEAD-box RNA helicase with ATPase and ATP-dependent RNA unwinding activities. Gene 2008; 414: 19-31. https://doi.org/10.1016/j.gene.2008.01.024
  60. Weston A, Sommerville J. Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res 2006; 34: 3082-3094. https://doi.org/10.1093/nar/gkl409
  61. Mair GR, Braks JA, Garver LS, Wiegant JC, Hall N, et al. Regulation of sexual development of Plasmodium by translational repression. Science 2006; 313: 667-669. https://doi.org/10.1126/science.1125129
  62. Tarique M, Ahmad M, Ansari A, Tuteja R. Plasmodium falciparum DOZI, and RNA helicase interacts with eIF4E. Gene 2013; 522: 46-59. https://doi.org/10.1016/j.gene.2013.03.063
  63. Kramer S, Queiroz R, Ellis L, Hoheisel JD, Clayton C, Carrington M. The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci 2010; 123: 699-711. https://doi.org/10.1242/jcs.058511
  64. Holetz FB, Alves LR, Probst CM, Dallagiovanna B, Marchini FK, Buck G, Krieger MA, Correa A, Goldenberg S. Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma cruzi. FEBS J 2010; 277: 3415-3426. https://doi.org/10.1111/j.1742-4658.2010.07747.x
  65. Goringer HU. 'Gestalt', composition and function of the Trypanosoma brucei editosome, Annu Rev Microbiol 2012; 66: 65-82. https://doi.org/10.1146/annurev-micro-092611-150150
  66. Missel A, Souza AE, Norskau G, Goringer HU. Disruption of a gene encoding a novel mitochondrial DEAD-box protein in Trypanosoma brucei affects edited mRNAs. Mol Cell Biol 1997; 17: 4895-4903. https://doi.org/10.1128/MCB.17.9.4895
  67. Li F, Herrera J, Zhou S, Maslov DA, Simpson L. Trypanosome REH1 is an RNA helicase involved with the 3'-5' polarity of multiple gRNA-guided uridine insertion/deletion RNA editing. Proc Natl Acad Sci U S A 2011; 108: 3542-3547. https://doi.org/10.1073/pnas.1014152108
  68. Hernandez A, Madina BR, Ro K, Wohlschlegel JA, Willard B, Kinter MT, Cruz-Reyes J. REH2 RNA helicase in kinetoplastid mitochondria: ribonucleoprotein complexes and essential motifs for unwinding and guide RNA (gRNA). J Biol Chem 2010; 285: 1220-1228. https://doi.org/10.1074/jbc.M109.051862
  69. Missel A, Lambert L, Norskau G, Goringer HU. DEAD box protein HEL64 from Trymanosoma brucei: subcellularlocalization and gene knockout analysis. Parasitol Res 1999; 85: 324-330. https://doi.org/10.1007/s004360050556
  70. Diaz AM, Rossi MS, Espinosa JM, Guida C, Freitas FA, Kornblihtt AR, Zingales B, Flawia MM, Torres HN. mRNA encoding a putative RNA helicase of the DEAD-box gene family is up-regulated in trypomastigotes of Trypanosoma cruzi. J Eukaryot Microbiol 2000; 47: 555-560. https://doi.org/10.1111/j.1550-7408.2000.tb00089.x
  71. Singh M, Singh PK, Bhattacharya SM. RNAi mediated silencing of ATPase RNA helicase gene in adult filarial parasite Brugia malayi impairs in vitro microfilaria release and adult parasite viability. J Biotechnol 2012; 157: 351-358. https://doi.org/10.1016/j.jbiotec.2011.12.003
  72. Singh M, Srivastava KK, Bhattacharya SM. Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi. Parasitol Res 2009; 104: 753-761. https://doi.org/10.1007/s00436-008-1251-6
  73. Cencic R, Pelletier J. Throwing a monkey wrench in the motor: targeting DExH/D box proteins with small molecule inhibitors. Biochim Biophys Acta 2013; 1829: 894-903. https://doi.org/10.1016/j.bbagrm.2013.01.008

Cited by

  1. Plasmodium falciparum specific helicase 3 is nucleocytoplasmic protein and unwinds DNA duplex in 3′ to 5′ direction vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-12927-x
  2. Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum vol.11, pp.1, 2015, https://doi.org/10.1186/s13071-018-2889-2
  3. Plasmodium falciparum specific helicase 2 is a dual, bipolar helicase and is crucial for parasite growth vol.9, pp.None, 2015, https://doi.org/10.1038/s41598-018-38032-1
  4. Investigation of hub genes and their nonsynonymous single nucleotide polymorphism analysis in Plasmodium falciparum for designing therapeutic methodologies using next-generation sequencing approach vol.51, pp.6, 2019, https://doi.org/10.4103/ijp.ijp_535_19
  5. Role of ATP in the RNA Translocation Mechanism of SARS-CoV-2 NSP13 Helicase vol.125, pp.31, 2015, https://doi.org/10.1021/acs.jpcb.1c04528