Browse > Article
http://dx.doi.org/10.3347/kjp.2015.53.5.583

DEAD/DExH-Box RNA Helicases in Selected Human Parasites  

Marchat, Laurence A. (Institutional Program of Molecular Biomedicine, Biotechnology Program, National School of Medicine and Homeopathy of the National Polytechnic Institute)
Arzola-Rodriguez, Silvia I. (Genomics Sciences Program, Autonomous University of Mexico City)
Cruz, Olga Hernandez-de la (Genomics Sciences Program, Autonomous University of Mexico City)
Lopez-Rosas, Itzel (Institutional Program of Molecular Biomedicine, Biotechnology Program, National School of Medicine and Homeopathy of the National Polytechnic Institute)
Lopez-Camarillo, Cesar (Genomics Sciences Program, Autonomous University of Mexico City)
Publication Information
Parasites, Hosts and Diseases / v.53, no.5, 2015 , pp. 583-595 More about this Journal
Abstract
DEAD/DExH-box RNA helicases catalyze the folding and remodeling of RNA molecules in prokaryotic and eukaryotic cells, as well as in many viruses. They are characterized by the presence of the helicase domain with conserved motifs that are essential for ATP binding and hydrolysis, RNA interaction, and unwinding activities. Large families of DEAD/DExH-box proteins have been described in different organisms, and their role in all molecular processes involving RNA, from transcriptional regulation to mRNA decay, have been described. This review aims to summarize the current knowledge about DEAD/DExH-box proteins in selected protozoan and nematode parasites of medical importance worldwide, such as Plasmodium falciparum, Leishmania spp., Trypanosoma spp., Giardia lamblia, Entamoeba histolytica, and Brugia malayi. We discuss the functional characterization of several proteins in an attempt to understand better the molecular mechanisms involving RNA in these pathogens. The current data also highlight that DEAD/DExH-box RNA helicases might represent feasible drug targets due to their vital role in parasite growth and development.
Keywords
RNA helicase; protozoa; nematode; RNA metabolism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gorbalenya A, Koonin E. Helicases: amino acid sequence comparisons and structure-function relationships. Curr Biol 1993; 3: 419-429.   DOI
2 Linder P. Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res 2006; 34: 4168-4180.   DOI
3 Fairman-Williams ME, Guenther U-P, Jankowsky E. SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 2010; 20: 313-324.   DOI
4 Cordin O, Banroques J, Tanner NK, Linder P. The DEAD-box protein family of RNA helicases. Gene 2006; 367: 17-37.   DOI
5 Henn A, Bradley MJ, De La Cruz EM. ATP utilization and RNA conformational rearrangement by DEAD-box proteins. Annu Rev Biophys 2012; 41: 247-267.   DOI
6 Chamot D, Colvin KR, Kujat-Choy SL, Owttrim GW. RNA structural rearrangement via unwinding and annealing by the cyanobacterial RNA helicase, CrhR. J Biol Chem 2005; 280: 2036-2044.   DOI
7 Gebhard LG, Kaufman SB, Gamarnik AV. Novel ATP-independent RNA annealing activity of the dengue virus NS3 helicase. PLoS One 2012; 7: e36244.   DOI
8 Putnam AA, Jankowsky E. DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim Biophys Acta 2013; 1829: 884-893.   DOI
9 Jankowsky E. RNA Helicases at work: binding and rearranging. Trends Biochem Sci 2011; 36: 19-29.   DOI
10 Steimer L, Klostermeier D. RNA helicases in infection and disease. RNA Biol 2012; (6): 751-771.
11 WHO (World Health Organization). World Malaria report: 2011. www.who.int/iris/handle/10665/44792#sthash.bhDDQG00.dpuf.
12 Tuteja R, Pradhan A. Unraveling the "DEAD-box" helicases of Plasmodium falciparum. Gene 2006; 376: 1-12.   DOI
13 Tuteja R. Genome wide identification of Plasmodium falciparum helicases. A comparison with human host. Cell Cycle 2010; 9: 104-120.   DOI
14 Teixeira SM, de Paiva RM, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 2012; 35: 1-17.   DOI
15 Gargantini PR, Lujan HD, Pereira CA. In silico analysis of trypanosomatids’ helicases. FEMS Microbiol Lett 2012; 335: 123-129.   DOI
16 Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309: 436-442.   DOI
17 Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309: 416-422.   DOI
18 El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005; 309: 409-415.   DOI
19 El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science 2005; 309: 404-409.   DOI
20 Gargantini PR, Serradell MC, Torri A, Lujan HD. Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts. BMC Microbiol 2012; 12: 284.   DOI
21 Feng Y, Xiao L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 2011; 24: 110-140   DOI
22 Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 2003; 426: 172-176.   DOI
23 Adam RD. The Giardia lamblia genome. Int J Parasitol 2000; 30: 475-484.   DOI
24 Jackson TF. Epidemiology. In Ravdin JI ed, Amebiasis. London, UK. Imperial College Press. 2000, pp. 47-63.
25 Loftus DJ, Hall N. Entamoeba: still more to be learned from the genome. Trends Parasitol 2005; 21: 453.   DOI
26 Marchat LA, Orozco E, Guillen N, Weber C, Lopez-Camarillo C. Putative DEAD and DExH-box RNA helicases families in Entamoeba histolytica. Gene 2008; 424: 1-10.   DOI
27 World Health Organization. Global program to eliminate lymphatic filariasis (GPELF), 2010. Geneva, Switzerland. Progress report 2000-2009 and strategic plan 2010-2020. 2010.
28 Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, et al. Draft genome of the filarial nematode parasite Brugia malayi. Science 2007; 317: 1756-1760.   DOI
29 Tuteja R, Ansari A, Suthar MK, Saxena JK. Genome wide computational analysis of Brugia malayi helicases: a comparison with human host. Gene 2012; 499: 202-208.   DOI
30 Boc A., Diallo AB, Makarenkov V. T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks, Nucleic Acids Res 2012; 40: W573-W579.   DOI
31 Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22: 2688-2690.   DOI
32 Falk S, Weir JR, Hentschel J, Reichelt P, Bonneau F, Conti E. The molecular architecture of the TRAMP complex reveals the organization and interplay of its two catalytic activities. Mol Cell 2014; 55: 856-867.   DOI
33 Cristodero M, Clayton CE. Trypanosome MTR4 is involved in rRNA processing. Nucleic Acids Res 2007; 35: 7023-7030.   DOI
34 Kressler D, Hurt E, Bassler J. Driving ribosome assembly. Biochim Biophys Acta 2009; 1803: 673-683.
35 Emery B, De La Cruz J, Rocak S, Deloche O, Linder P. Has1p, a member of the DEAD-box family, is required for 40S ribosomal subunit biogenesis in Saccharomyces cerevisiae. Mol Microbiol 2004; 52: 141-158.   DOI
36 Prakash K, Tuteja R. A novel DEAD box helicase Has1p from Plasmodium falciparum; N-terminal is essential for activity. Parasitol Int 2010; 59: 271-277.   DOI
37 Chang TH, Tung L, Yeh FL, Chen JH, Chang SL. Functions of the DExD/H-box proteins in nuclear pre-mRNA splicing. Biochim Biophys Acta 2013; 1829: 764-774.   DOI
38 Tuteja R. Helicases involved in splicing from malaria parasite Plasmodium falciparum. Parasitol Int 2011: 60: 335-340.   DOI
39 Shankar J, Pradhan A, Tuteja R. Isolation and characterization of Plasmodium falciparum UAP56 homologue: evidence for the coupling of RNA binding and splicing activity by site-directed mutations. Arch Biochem Biophys 2008; 478: 143-153.   DOI
40 Dhalia R, Marinsek N, Reis C, Katz R, Muniz J, Standart N, Carrington M, de Melo Neto OP. The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Res 2006; 34: 2495-2507.   DOI
41 Silva MT, Ambrosio DL, Trevelin CC, Watanabe TF, Laure HJ, Greene LJ, Rosa JC, Valentini SR, Cicarelli RM. New insights into trypanosomatid U5 small nuclear ribonucleoproteins. Mem Inst Oswaldo Cruz 2011; 106: 130-138.
42 Pena V, Jovin SM, Fabrizio P, Orlowski J, Bujnicki JM, Luhrmann R, Wahl MC. Common design principles in the spliceosomal RNA helicase Brr2 and in the Hel308 DNA helicase. Mol Cell 2009; 35: 454-466.   DOI
43 Ambrosio DL, Lee JH, Panigrahi AK, Nguyen TN, Cicarelli RM, Gunzl A. Spliceosomal proteomics in Trypanosoma brucei reveal new RNA splicing factors. Eukaryot Cell 2009; 8: 990-1000.   DOI
44 Valdes J, Nozaki T, Sato E, Chiba Y, Nakada-Tsukui K, Villegas-Sepulveda N, Winkler R, Azuara-Liceaga E, Mendoza-Figueroa MS, Watanabe N, Santos HJ, Saito-Nakano Y, Galindo-Rosales JM. Proteomic analysis of Entamoeba histolytica in vivo assembled pre-mRNA splicing complexes. J Proteomics 2014; 111: 30-45.   DOI
45 Tieg B, Krebber H. Dbp5-from nuclear export to translation. Biochim Biophys Acta 2013; 1829: 791-798.   DOI
46 Mehta J, Tuteja R. A novel dual Dbp5/DDX19 homologue from Plasmodium falciparum requires Q motif for activity. Mol Biochem Parasitol 2011; 176: 58-63.   DOI
47 Mehta J, Tuteja R. Inhibition of unwinding and ATPase activities of Plasmodium falciparum Dbp5/DDX19 homolog. Commun Integr Biol 2011; 4: 299-303.   DOI
48 Serpeloni M, Vidal NM, Goldenberg S, Avila AR, Hoffmann FG. Comparative genomics of proteins involved in RNA nucleocytoplasmic export. BMC Evol Biol 2011; 11: 7.   DOI
49 Inoue AH, Serpeloni M, Hiraiwa PM, Yamada-Ogatta SF, Muniz JRC, Motta MC, Vidal NM, Goldenberg S, Avila AR. Identification of a novel nucleocytoplasmic shuttling RNA helicase of trypanosomes. PLoS One 2014; 9: e109521.   DOI
50 Ling SH, Cheng Z, Song H. Structural aspects of RNA helicases in eukaryotic mRNA decay. Biosci Rep 2009; 29: 339-349.   DOI
51 Pradhan A, Tuteja R. Bipolar, dual Plasmodium falciparum helicase 45 expressed in the intraeythrocytic developmental cycle is required for parasite growth. J Mol Biol 2007; 373: 268-281.   DOI
52 Pradhan A, Hussan E, Tuteja R. Characterization of replication fork and phosphorylation stimulated Plasmodium falciparum helicase 45. Gene 2008; 420: 66-75.   DOI
53 Dhalia R, Reis C, Freire E, Rocha P, Katz R, Muniz JR, Standart N, de Melo Neto OP. Translation initiation in Leshmania major: characterization of multiple eIF4F subunit homologues. Mol Biochem Parasitol 2005; 140: 23-41.   DOI
54 Skeiky YA, Kennedy M, Kaufman D, Borges MM, Guderian JA, Scholler JK, Ovendale PJ, Picha KS, Morrissey PJ, Grabstein KH, Campos-Neto A, Reed SG. LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile. J Immunol 1998; 161: 6171-6179.
55 Barhoumi M, Tanner NK, Banroques J, Linder P, Guizani I. Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast. FEBS J 2006; 273: 5086-5100.   DOI
56 Senissar M, Le Saux A, Belgareh-Touze N, Adam C, Banroques J, Tanner NK. The DEAD-box helicase Ded1 from yeast is an mRNP cap-associated protein that shuttles between the cytoplasm and nucleus. Nucleic Acids Res 2014; 42: 10005-10022.   DOI
57 Zinoviev A, Akum Y, Yahav T, Shapira M. Gene duplication in trypanosomatids - two DED1 paralogs are functionally redundant and differentially expressed during the life cycle. Mol Biochem Parasitol 2010; 185: 127-136.
58 Zinoviev A, Leger M, Wagner G, Shapira M. A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways. Nucleic Acids Res 2011; 39: 8404-8415.   DOI
59 Lopez-Camarillo C, Garcia-Hernandez ML, Marchat LA, Luna-Arias JP, Hernandez de la Cruz O, Mendoza L, Orozco E. Entamoeba histolytica EhDEAD1 is a conserved DEAD-box RNA helicase with ATPase and ATP-dependent RNA unwinding activities. Gene 2008; 414: 19-31.   DOI
60 Weston A, Sommerville J. Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res 2006; 34: 3082-3094.   DOI
61 Mair GR, Braks JA, Garver LS, Wiegant JC, Hall N, et al. Regulation of sexual development of Plasmodium by translational repression. Science 2006; 313: 667-669.   DOI
62 Tarique M, Ahmad M, Ansari A, Tuteja R. Plasmodium falciparum DOZI, and RNA helicase interacts with eIF4E. Gene 2013; 522: 46-59.   DOI
63 Kramer S, Queiroz R, Ellis L, Hoheisel JD, Clayton C, Carrington M. The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci 2010; 123: 699-711.   DOI
64 Holetz FB, Alves LR, Probst CM, Dallagiovanna B, Marchini FK, Buck G, Krieger MA, Correa A, Goldenberg S. Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma cruzi. FEBS J 2010; 277: 3415-3426.   DOI
65 Goringer HU. 'Gestalt', composition and function of the Trypanosoma brucei editosome, Annu Rev Microbiol 2012; 66: 65-82.   DOI
66 Missel A, Souza AE, Norskau G, Goringer HU. Disruption of a gene encoding a novel mitochondrial DEAD-box protein in Trypanosoma brucei affects edited mRNAs. Mol Cell Biol 1997; 17: 4895-4903.   DOI
67 Li F, Herrera J, Zhou S, Maslov DA, Simpson L. Trypanosome REH1 is an RNA helicase involved with the 3'-5' polarity of multiple gRNA-guided uridine insertion/deletion RNA editing. Proc Natl Acad Sci U S A 2011; 108: 3542-3547.   DOI
68 Hernandez A, Madina BR, Ro K, Wohlschlegel JA, Willard B, Kinter MT, Cruz-Reyes J. REH2 RNA helicase in kinetoplastid mitochondria: ribonucleoprotein complexes and essential motifs for unwinding and guide RNA (gRNA). J Biol Chem 2010; 285: 1220-1228.   DOI
69 Missel A, Lambert L, Norskau G, Goringer HU. DEAD box protein HEL64 from Trymanosoma brucei: subcellularlocalization and gene knockout analysis. Parasitol Res 1999; 85: 324-330.   DOI
70 Diaz AM, Rossi MS, Espinosa JM, Guida C, Freitas FA, Kornblihtt AR, Zingales B, Flawia MM, Torres HN. mRNA encoding a putative RNA helicase of the DEAD-box gene family is up-regulated in trypomastigotes of Trypanosoma cruzi. J Eukaryot Microbiol 2000; 47: 555-560.   DOI
71 Singh M, Singh PK, Bhattacharya SM. RNAi mediated silencing of ATPase RNA helicase gene in adult filarial parasite Brugia malayi impairs in vitro microfilaria release and adult parasite viability. J Biotechnol 2012; 157: 351-358.   DOI
72 Singh M, Srivastava KK, Bhattacharya SM. Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi. Parasitol Res 2009; 104: 753-761.   DOI
73 Cencic R, Pelletier J. Throwing a monkey wrench in the motor: targeting DExH/D box proteins with small molecule inhibitors. Biochim Biophys Acta 2013; 1829: 894-903.   DOI